簡易檢索 / 詳目顯示

研究生: 鍾佩君
Pei-Chun Chung
論文名稱: 以拉曼散射光譜分析氮化鎵與碳化矽薄膜之應變分佈
Analysis of strain in GaN and SiC films by Raman-scattering spectroscopy
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 127
中文關鍵詞: 拉曼散射氮化鎵碳化矽應變
英文關鍵詞: Raman scattering, GaN, SiC, Strain
論文種類: 學術論文
相關次數: 點閱:345下載:53
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們測量氮化鎵與碳化矽薄膜的拉曼散射光譜,研究薄膜的晶格結構,並以直線掃描方式測量薄膜截面的拉曼散射光譜,分析拉曼特徵峰參數隨距離薄膜表面不同深度的變化,進一步建立膜厚與應變、殘餘應力的相關性。
    首先,7.6 micrometre厚度氮化鎵薄膜的拉曼散射光譜顯示兩個顯著特徵峰(E2(high)與A1(LO)對稱性振動模),其頻率位置約為569 cm-1與739 cm-1,截面光譜顯示五個一階拉曼活性振動模,E2(low)、A1(TO)、E1(TO)、E2(high)、及E1(LO)拉曼特徵峰的頻率位置約為143 cm-1、531 cm-1、558 cm-1、567 cm-1及740 cm-1,這意味著,氮化鎵薄膜屬於六方烏采晶格結構。而5.0 micrometre厚度碳化矽薄膜表面與截面的拉曼散射光譜皆顯示TO與LO對稱性振動模,其頻率位置約為796.1 cm-1與970.5 cm-1,代表碳化矽薄膜為立方晶系結構。
    接著,我們以直線掃描方式測量薄膜截面的拉曼散射光譜,發現7.6 micrometre厚度的氮化鎵薄膜之E2(high)對稱性振動模與5.0 micrometre厚度的碳化矽薄膜之TO振動模愈接近基板界面,其頻率位置展示藍移現象;反之,4.0 m厚度、及摻雜矽之4.0 micrometre與2.0 micrometre厚度氮化鎵薄膜之E2(high)對稱性振動模顯示紅移現象。
    氮化鎵薄膜的E2(high)振動模出現紅移現象,代表薄膜內部存在伸張應變,此時薄膜與基板的晶格常數不匹配對薄膜應變影響較明顯;若是薄膜的E2(high)振動模出現藍移現象,則表示薄膜內部存在壓縮應變,此結果表示熱膨脹係數對應變的影響較顯著。氮化鎵薄膜與藍寶石基板交界面的應變量值約為8.0 × 10-4 ~ 1.16 × 10-3 。而碳化矽薄膜的TO振動模出現藍移現象,此與碳化矽薄膜的沉積溫度與速率有關,其與矽基板交界面處的應變量值約為1.78 × 10-4。

    We present Raman-scattering studies of structural phases in GaN and 3C-SiC films. Cross-sectional Raman spectra are also used to detect the depth dependence of residual strain in both films.
    First, the Raman spectrum of 7.6 micrometre-thick GaN film shows two phonon modes at about 569 cm-1 and 739 cm-1, corresponding to E2(high) and A1(LO) symmetries. While the cross-sectional spectrum exhibits five first-order Raman modes at about 143 cm-1, 531 cm-1, 558 cm-1, 567 cm-1 and 740 cm-1 having symmetries E2(low), A1(TO), E1(TO), E2(high) and E1(LO). These results reflect the characteristics of wurtzite phase of GaN film. The TO and LO phonon modes are observed at about 796.1 cm-1 and 970.5 cm-1 in different configurations of 5.0 micrometre-thick 3C-SiC film, indicating its cubic structure.
    Second, we found that the peak positions of E2(high) and TO phonon modes exhibit a blueshift as one probes deeper from the surface into the sample toward the substrate in 7.6 micrometre-thick GaN film and 5.0 micrometre-thick 3C-SiC film, respectively. In contrast, the E2(high) phonon mode shows a redshift in 4.0 micrometre-thick GaN film and other Si-doped GaN films.
    The above data indicate two implications: (i) the blueshift observed in E2(high) phonon mode of GaN film is mainly due to the effect of lattice mismatch between film and substrate, while the redshift arises from the effect of thermal coefficient; (ii) the blueshift observed in TO phonon mode of 3C-SiC film is likely associated with different deposition conditions of the films. Finally, the values of strain on the interface between GaN film and sapphire substrate are ranging from 8.0 × 10-4 to 1.16 × 10-3. In the case of 3C-SiC film, it is about 1.78 × 10-4.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 xiv 第一章 緒論 1 第二章 研究背景與介紹 4 2-1 薄膜應變分析理論 4 2-2 文獻回顧 9 第三章 實驗儀器設備與基本原理 18 3-1 拉曼散射光譜儀系統 18 3-2 拉曼散射光譜理論 19 第四章 實驗樣品特性 23 4-1樣品製程 23 4-2 樣品物性 24 第五章 實驗結果與討論 39 5-1 氮化鎵薄膜的拉曼散射光譜研究 39 5-2 碳化矽薄膜的拉曼散射光譜研究 51 第六章 結論與未來展望 121 參考文獻 123

    [1]賴彥霖,國立成功大學材料科學及工程學系博士論文,95年7月。
    [2]S. Yoshida, S. Misawa, and S. Gonda, “Epitaxial growth of GaN/AlN heterostructures”, J. Vac. Sci. Technol. B 1, 250 (1983).
    [3]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. 48, 353 (1986).
    [4]張靜宜,國立成功大學材料科學及工程學系碩士論文,94年7月。
    [5]Carl J. Neufeld, Nikholas G. Toledo, Samantha C. Cruz, Michaeliza, and Steven P. DenBaars, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap”, Appl. Phys. Lett. 93, 143502 (2008).
    [6]Shiro Hara, S. Misawa, and S. Yoshida, “Additional dimer-row structure of 3C-SiC surfaces observedby scanning tunneling microscopy”, Phys. Rev. B 50, 4548 (1996).
    [7]C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, III, E. Jones, Z. Liliental-Weber, M. Rubin, and E. R. Weber, “Strain-related phenomena in GaN thin films”, Phys. Rev. B 54, 17745 (1996).
    [8]R. C. Hibbeler, “Mechanics of Materials”, 5th edition, Prentice Hall, 2003.
    [9]V. Darakchieva, T. Paskova, M. Schubert, H. Arwin, P. P. Paskov, B. Monemar, D. Hommel, M. Heuken, J. Off, F. Scholz, B. A. Haskell, P. T. Fini, J. S. Speck, and S. Nakamura, “Anisotropic strain and phonon deformation potentials in GaN”, Phys. Rev. B 75, 195217 (2007).
    [10]S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, “Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy”, J. Appl. Phys. 91, 1113 (2002).
    [11]G. Nootz, A. Schulte, L. Chernyak, A. Osinsky, J. Jasinski, M. Benamara, and Z. Liliental-Weber, “Correlations between spatially resolved Raman shifts and dislocation density in GaN films”, Appl. Phys. Lett. 80, 1355 (2002).
    [12]L. T. Romano, C. G. Van de Walle, J. W. Ager III, W. Götz, and R. S. Kern, “Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 87, 7745 (2000).
    [13]D. Huantao, G. Wenping, Z. Jincheng, H. Yue, C. Chi, N. Jinyu, and X. Shengrui, “Characterization of GaN grown on 4H-SiC and sapphire by Raman spectroscopy and high resolution XRD”, J. Semicond. 30, 073001 (2009).
    [14]D. Olego and M. Cardona, “Pressure dependence of Raman phonons of Ge and 3C-SiC”, Phys. Rev. B 25, 1151 (1982).
    [15]L. A. Falkovsky, J. M. Bluet, and J. Camassel, “Strain relaxation at the 3C-SiC/Si interface: Raman scattering experiments”, Phys. Rev. B 55, 11283 (1998).
    [16]J. Zhu, S. Liu, and J. Liang, “Raman study on residual strains in thin 3C-SiC epitaxial layers grown on Si(001)”, Thin Solid Films 368, 307 (2000).
    [17]M. Zielinski, A. Leycuras, S. Ndiaye, and T. Chassagne, “Stress relaxation during the growth of 3C-SiC/Si thin films”, Appl. Phys. Lett. 89, 131906 (2006).
    [18]J. M. Zhang, T. Ruf, M. Cardona, O. Ambacher, M. Stutzmann, J. M. Wagner, and F. Bechstedt, “Raman spectra of isotopic GaN”, Phys. Rev. B 56, 14399 (1997).
    [19]Hans Kuzmany, “Solid-state spectroscopy: an introduction”, 2nd ed, Springer, 1998.
    [20]Shuji Nakamura, Stephen Pearton, and Gerhard Fasol, “The Blue Laser Diode”, Springer, 2000.
    [21]K. Barghout and J. Chaudhuri, “Calculation of residual thermal stress in GaN epitaxial layers grown on technologically important substrates”, J. Mater. Sci. 39, 5817 (2004).
    [22]W. S. Choi, S. J. Moon, S. S. A. Seo, D. Lee, J. H. Lee, P. Murugavel, T. W. Noh, and Y. S. Lee, “Optical spectroscopic investigation on the coupling of electronic and magnetic structure in multiferroic hexagonal RMnO3 (R=Gd, Tb, Dy, and Ho) thin films”, Phys. Rev. B 78, 054440 (2008)
    [23]H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, “Zone-boundary phonons in hexagonal and cubic GaN”, Phys. Rev. B 55, 7000 (1997).
    [24]H. Gao, F. Yan, H. Zhang, J. Li, J. Wang, and J. Yan, “First and second order Raman scattering spectroscopy of nonpolar-plane GaN”, J. Appl. Phys. 101, 103533 (2007).
    [25]Z. C. Feng, A. J. Mascarenhas, W. J. Choyke, and J. A. Powell, “Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100) Si”, J. Appl. Phys. 64, 3176 (1988).
    [26]A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results”, Phys. Rev. B 59, 6774 (1999).
    [27]D. N. Talwar and Joseph C. Sherbondy, “Thermal expansion coefficient of 3C–SiC”, Appl. Phys. Lett. 67, 3301 (1995) .
    [28]T. Amhata, T. Sota, K. Suzuki, and S. Nakamura, “Polarized Raman spectra in GaN”, J. Phys.: Condens. Matter 7, L129 (1995).
    [29]K. Miwa and A. Fukumoto, “First-principles calculation of the structural, electronic, and vibrational properties of gallium nitride and aluminum nitride”, Phys. Rev. B 48, 7897 (1993).
    [30]V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, and A. N. Smirnov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN”, Phys. Rev. B 58, 12899 (1998).
    [31]M. Kadleíková, J. Breza, and M. Vesel, “Raman spectra of synthetic sapphire”, Microelectronics Journal. 32, 955, (2001).
    [32]Z. C. Feng, W. Wang, S. J. Chua, P. X. Zhang, K. P. J. Williams, and G. D. Pitt, “Raman scattering properties of GaN thin films grown on sapphire under visible and ultraviolet excitation”, J. Raman Spectrosc. 32, 840 (2001).
    [33]H. Siegle, L. Eckey, A. Hoffmann, and C. Thomsen, “Quantitative determination of hexagonal minority phase in cubic GaN using Raman spectroscopy”, Solid State Commun. 96, 943 (1995).
    [34]H. W. Kunert, “Three phonon processes in GaN”, Superlattices Microstruct. 36, 651 (2004).
    [35]J. W. Chen, Y. F. Chen, H. Lu, and W. J. Schaff, “Cross-sectional Raman spectra of InN epifilms”, Appl. Phys. Lett. 87, 041907 (2005).
    [36]J. Serrano, J. Strempfer, and M. Cardona, “Determination of the phonon dispersion of zinc blende (3C) silicon carbide by inelastic x-ray scattering”, Appl. Phys. Lett. 80, 4360 (2002).
    [37]F. Widulle, T. Ruf, O. Buresch, A. Debernardi, and M. Cardona, “Raman study of isotope effects and phonon eigenvectors in SiC”, Phys. Rev. Lett. 83, 3089 (2007).
    [38]K. Karch, P. Pavone, W. Mindi, O. Schutt, and D. Strauch, “Ab initio calculation of structural and lattice-dynamical properties of silicon carbide”, Phys. Rev. B 50, 17054 (1994).

    下載圖示
    QR CODE