簡易檢索 / 詳目顯示

研究生: 楊鵬耀
Peng-Yao Yang
論文名稱: 探究電腦多媒體教學對於國三學生學習酸鹼概念與概念改變之歷程
To investigate ninth graders' learning and conceptual change of acidity and alkalinity via the use of multimedia instruction
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 227
中文關鍵詞: 酸鹼概念迷思概念心智模式電腦動畫概念改變二階段診斷工具
英文關鍵詞: the conceptions of acids and bases, misconceptions, mental models, animations, conceptual changes, two-tier questionnaires
論文種類: 學術論文
相關次數: 點閱:515下載:82
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在科學的課程中,酸鹼概念是相當重要的科學概念,本研究的主要目的在於探討我國國三學生在使用有關酸鹼鹽概念的電腦多媒體教材教學後,其對於酸鹼鹽概念之理解程度、迷思概念及心智模式的類型之改變情形。本研究中,採取了FLASH軟體製作動畫教材,呈現酸鹼鹽單元中抽象的概念,例如:酸性溶液與鹼性溶液的解離情形及中和情形,及酸鹼中和後的水及鹽類的水解情形,並維持教學內容的一致性。
    研究對象是以台北縣某高中之國中部國三學生,隨機抽取出二個常態編班之班級共74人。研究重點以國中理化教材為主,統整其中的酸鹼鹽概念,建立重要的教學目標,據此完成電腦教學動畫及教學投影片,將教材分成A、B兩組實施,並採用二階段診斷測驗進行前測、後測、延宕測驗,亦在此兩組各抽取六人,於後測及延宕測驗時進行半結構性晤談,並根據所得的資料,找出學生的迷思概念及心智模式類型的轉變取向。
    研究的結果發現:在後測與前測答對率的比較中,A組的學生答對率達顯著差異(p=0.012);B組的學生答對率亦達顯著差異(p=0.000),因此實驗教材的實驗可有效地提昇學生在酸鹼鹽單元中概念的學習。但在不同教材上的實施後,A組及B組之組間比較中,兩次測驗答對率的差異並未達顯著水準,也就是說,這兩份教材的不同並不影響學生學習的結果。在延宕測驗與後測答對率的比較中,A組的學生答對率未達顯著差異;B組的學生答對率亦未達顯著差異,因此概念變化的現象並不明顯。在後測六週後進行的延宕測驗,A組及B組之組間之答對率的差異並未達顯著水準,即表示教材的不同,不影響學生在教材實施後,其概念改變的情形。
    在兩次晤談的結果比較分析,我們可以看到在不同的題型中,學生在後測訪談與延宕測驗之間的表現相當不一致,在中低成就的學生中,具有迷思概念維持或是迷思概念的型態發生改變的情形較明顯;在高成就的同學中,於弱酸及弱鹼之解離度變化概念、酸鹼中和概念、氣體溶解之酸鹼概念等相關題型中,亦具有迷思概念維持或是迷思概念的型態發生改變的情形。但無論同學們的成就如何,皆會發生迷思概念改變的情形。
    在各項迷思概念類型中,其主要的心智模式如下:在溶液酸鹼性質單元有:現象模式、名稱-符號模式。在酸鹼混合單元有:強度模式、量的模式、電中性模式、名稱模式。在氣體溶解溶液酸鹼性單元有:溶液模式、壓力模式。在電解質解離單元有:解離度錯置模式、濃度模式及通電模式。在酸鹼強度與氫離子濃度的有:強度模式、量的模式、溫度錯置模式。在弱酸弱鹼稀釋單元有:恆定模式、體積改變模式、濃度模式、平衡方向錯置模式。

    The conception about acids and bases is important in the science curriculum. It not only closely relates to daily life and natural phenomenon, but also play a pivotal role in the development of chemistry history. The main purpose of this study was to explore the comprehensive level of our junior high school students after the instruction of the unit about acids, bases and salts by multimedia and animation. The change of misconceptions and metal models about acids, bases and salts were investigated as well. In this study, the abstract conception of the acidity and alkalinity was presented with the software, FLASH, such as the ionization of the acid solution and the base one, the neutralization, as well as the hydrolysis of the salts and water, after the neutralization.
    74 junior high school students of 9th grade in two classes were sampled randomly from a local school in Taipei County. The study focus on integrating the conceptions in the units about acids, bases and salts from the textbooks for junior high school, and conforming the goals of the instruction. According to the above, the researcher designed the animations and the slides for instruction, and then the teaching aids were used in both group A and group B. Both of the groups took the pretest, posttest and extensive test which were constructed by the two-tiers questionnaire in sequence. 6 students from each group were interviewed individually right after the posttest and extensive test, and the results of the interviews represented the changes of the students’ misconceptions and mental models.
    The results of the study were as follows. In the comparison of the veracity after the posttest and the pretest, the veracity of the group A was at the significance level (p=0.012), and so was that of the group B (p=0.000). This showed us that the instruction could influence the conceptual leaning about the unit in both of the groups. But after using the different instruction sets, the comparison between the two groups was not at the significance level. In other words, the difference of the both instruction sets couldn’t affect the students’ learning. After the extensive test and the posttest, both of the groups’ veracity was not at the significance level. That is, the conceptual change was not obvious after the extensive test. The extensive test which was taken by both of the groups in the six weeks after the end of the posttest received that, the comparison between the two groups was not at the significance level. It indirectly showed that the difference of the both instruction sets couldn’t affect the extensive test.
    In the comparison and analysis of the records of two interviews, sampled students were not consistent in the different concepts. The maintenance of misconceptions and the change of the misconception type were obvious in the students of middle and low achievement level; but the students in the high achievement level had similar situation in some conceptions such as the ionization of the weak acids and weak bases to dilute, the neutralization of acids and bases, the conception of a solution dissolve gas either acidic or basic. But no matter what level the students’ achievement belonged to, the misconceptions always existed.
    In all of the misconception about the units, the main mental models were shown as follows. A phenomenon model and a name-symbol model in the acidity or alkalinity of a solution; a strength model, a quantity model, a name model and an electricity neutral model in the neutralization of acids and bases; a converse-ionization model, a concentration model and a galvanization model in the conception of a solution dissolve gas either acidic or basic; a strength model, a quantity model, a converse- temperature model in the conception of the strength of acids and bases and the concentration of H+;and an immutable model, a volume model, a concentration model and a converse- equilibrium model in the conception of the weak acids and bases to dilute.

    誌謝 i 中文摘要 ii 英文摘要 iii 目錄 v 表次 vii 圖次 ix 第壹章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的與待答問題 3 第三節 名詞釋義 4 第四節 研究範圍及限制 6 第貳章 文獻探討 7 第一節 概念與概念改變 7 第二節 迷思概念的成因與特性 11 第三節 心智模式 17 第四節 國中學生酸鹼鹽迷思概念的相關研究 19 第五節 電腦教學應用在教學上的研究 26 第參章 研究方法 32 第一節 研究設計 32 第二節 研究對象 33 第三節 研究工具 34 第四節 研究步驟 47 第五節 研究假設及預期效益 48 第肆章 研究結果及分析 49 第一節 前測結果及分析 49 第二節 後測結果及分析 67 第三節 前、後測平均數顯著性分析 93 第四節 後測晤談結果及分析 99 第五節 延宕測驗結果及分析 117 第六節 延宕晤談結果分析及與後測晤談間之比較 125 第七節 各概念類型中的心智模式 149 第伍章 結論與建議 167 第一節 結論 167 第二節 建議 173 參考文獻 176 附錄 187 附錄一:二階段試題問卷 187 附錄一之1:前測問卷 187 附錄一之2:後測(延宕測驗)問卷 199 附錄一之3:後測(延宕測驗)答案卷 209 附錄二:動畫學習單 210 附錄二之1:動畫一之學習單 210 附錄二之2:動畫二之學習單 211 附錄二之3:動畫三之學習單 212 附錄三:晤談題綱 213 附錄四:投影片 219 附錄四之1:實驗A組投影片 219 附錄四之2:實驗B組投影片 223

    中文部份:

    王美芬、熊召弟(1995):國民小學自然科教材教法,台北:心理出版社。
    何佳燕(2002):探討粒子概念對國二學生學習溫度與熱的學習成就與心智模式之影響,台北市:國立臺灣師範大學科學教育研究所碩士論文。
    吳昌家(2002):電腦動畫輔助教學對國中學生粒子概念學習成效之研究,台北市:國立臺灣師範大學化學所碩士論文。
    吳盟仁(2001):國中網路虛擬化學實驗,台北市:國立臺灣師範大學資訊工程研究所碩士論文。
    吳輝遠(2001):國小教師應用網際網路於數學教學之個案研究,台北市:國立臺灣師範大學資訊工程研究所碩士論文。
    宋志雄(1992):探究國三學生酸與鹼的迷思概念並應用以發展教學診斷工具,彰化市:國立彰化師範大學科學教育研究所碩士論文。
    李秀貞(2002):電腦媒體教學與自我效能對國中理化學習成就之相關研究,台北市:國立臺灣師範大學化學所碩士論文。
    李偉新(2002):中學化學多媒體輔助教材之製作,台北市:國立臺灣師範大學化學所在職進修碩士班碩士論文。
    李詩閔(2000):以微量實驗裝置的教學活動探討學生對酸鹼概念的學習狀況,台北市:國立台灣師範大學化學研究所碩士論文。
    周仿敏(1985):國中化學科遊戲式電腦輔助教學之研究,台北市:國立臺灣師範大學化學所碩士論文。
    林振霖(1993):國中學生的分子概念為基礎的化學反應概念學習與診斷教學的研究。中華民國第九屆科學教育學術研討會,頁147-176。
    林清山 譯(1991):教育心理學-認知取向,台北:遠流出版公司。Richard E. Mayer (1986). Educational Psychology:A Cognitive Approach.
    林靜雯(2000):由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響,台北市:國立台灣師範大學科學教育研究所碩士論文。
    邱上峰(2002):以個別化電腦輔助教學探討學生對於氣體粒子概念之學習成效,台北市:國立臺灣師範大學化學所碩士論文。
    邱志強(2003):互動式電腦多媒體應用於高中「酸鹼滴定」教學之成效研究,台北市:國立臺灣師範大學化學所碩士論文。
    邱美子(2002):國中電化學電腦動畫輔助教學之學習成效研究,台北市:國立臺灣師範大學化學所碩士論文。
    邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
    邱美虹和翁雪琴(1995):國三學生「四季成因」之心智模式與推理歷程之探討。科學教育學刊,3(1),23-68。
    邱喚文(2000):利用概念圖探究國三學生酸與鹼的概念學習,台北市:國立台北師範學院數理教育研究所碩士論文。
    邱皓政(2000):量化研究與統計分析-spss中文視窗版資料分析範例解析,台北:五南圖書出版公司。
    邱顯博(2002):國二、國三學生的擴散作用概念與概念改變之研究,國立臺灣師範大學科學教育研究所碩士論文。
    南一書局(2004):國中自然與生活科技3下。台南市:南一書局。
    姚錦棟(2002):我國中學生酸鹼鹽迷思概念和心智模式之研究,台北市:國立臺灣師範大學科學教育研究所在職進修碩士班碩士論文。
    施朱娟(1998):國中酸鹼概念教學之研究,台北市:國立台灣師範大學化學研究所碩士論文。
    國立編譯館(2001):國民中學理化教科書第一至四冊。
    康軒文教事業(2004):國中自然與生活科技第四冊(2下)。台北市:康軒文教事業。
    張秀澂(2002):電腦動畫融入教學對國中生電化學學習成就影響之研究,台北市:國立臺灣師範大學化學所碩士論文。
    教育部(2000):國民教育九年一貫課程綱要:自然與科技學習領域。教育部。
    郭重吉(1988)。從認知的觀點探討自然科學的學習。彰師教育學院學報,13期,351-371 頁。
    郭重吉(1990)。學生科學知識認知結構的評估與描述。彰化師範大學學報,1期,279-319頁。
    郭重吉(2001):A review of studies on alternative conceptions for students in Taiwan。論文發表於國際認知科學與科學教育學術研討會。臺北市:國立臺灣師範大學。
    陳姍姍(1993):探究國三學生酸與鹼的迷思概念並應用以發展教學診斷工具,台北市:國立台灣師範大學化學研究所碩士論文。
    陳瓊森(1993):高一學生直流電路概念結構之研究。彰化師範大學學報,4,511~543。
    陳瓊森(1998):從建構主義觀點談概念形成及概念轉變。國民中學學生概念學習學術研討會。台北市:國立臺灣大學。
    黃萬居(1985):中學化學科電腦輔助教學之研究,台北市:國立臺灣師範大學化學所碩士論文。
    黃萬居(1994):國小高年級學生的認知層次與酸鹼概念之研究。臺北市立師範學院學報,25,1-35。
    黃萬居(1996):國小教師對酸鹼的迷思概念研究。臺北市立師範學院學報,27,105-132 。
    楊文金(1992):在職國小教師對基本電路之概念研究,中華民國第八屆科學教育學術研討會論文彙編,499-518。高雄:國立高雄師範大學。
    楊文金(1993):多重現象與電學概念理解研究。科學教育學刊,1(2),頁135-160。
    楊坤原、張賴妙理(2001):二階段式遺傳學迷思概念診斷工具之發展與效化,論文發表於中華民國第十七屆科學教育學術研究會,彰化市:國立彰化師範大學。
    楊煥謀(1997):國中理化科多媒體電腦輔助教學軟體製作之研究,台北市:國立臺灣師範大學化學所碩士論文。
    溫嘉榮(1982):電腦輔助教學教材軟體編製之研究,台北市:國立臺灣師範大學工業教育研究所碩士論文。
    詹麗卿(2002):中等學校化學動畫教材之研製,台北市:國立臺灣師範大學化學所在職進修碩士班碩士論文。
    劉俊庚(2002):迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響,國立臺灣師範大學科學教育研究所碩士論文。
    劉家成(2003):以動態評量探究國中學生浮力概念的心智模式及概念改變之歷程,台北市:國立臺灣師範大學科學教育研究所碩士論文。
    歐陽鐘仁(1988):科學教育概論,台北:五南圖書出版公司。
    鄭湧涇(1998):生物認知偏好與教學能力相關屬性的關係,師大學報:科學教育類, 43(1),47-61。
    翰林文教事業(2003):國中自然與生活科技2下。台北市:翰林文教事業。
    蕭惠君(1999):電腦網路在國民中小學教學應用之研究,台北市:國立臺灣師範大學資訊教育所碩士論文。
    蘇景進(2003):高三學生酸鹼鹽迷思概念之研究,台北市:國立臺灣師範大學科學教育研究所在職進修碩士班碩士論文。
    鐘聖校(1990):認知心理學,台北:心理出版社。
    魔奇工坊(2002):Flash MX 十項全能,台北:學貫行銷股份有限公司。

    西文部份:

    Arnone, V.C. (1971) The nature of concepts: A point of view, theory into practice, 10(2), 101-108.
    Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press. Carnap, R. (1950). Empiricism, semantics, and ontology. Revue Intermationale de Philosophie, 4, 20-40. Reprinted in the Supplement to Meaning and Necessity: A Study in Semantics and Modal Logic, enlarged edition (1956). University of Chicago Press.
    Champagne, A. B., Klopfer, L. E., & Anderson, J. H. (1980). Factors influencing the learning of classical mechanics. American Journal of Physics, 48, 1074-1079.
    Chiapetta, E. L., & McBride, J. W. (1980). Exploring the effects of general remediation of ninth-graders’ achievement of the mole concept. Science Education, 64(5), 609-614.
    Chiu, M. H., Lin, J. W., & Liang, J. C. (2003). An exploratory study on causes of students' misconceptions in Acids and Bases. Paper presented at the International Conference on Science & Mathematics Learning, December 16-18, 2003 , Taipei , Taiwan , R.O.C.
    Cosgrove, M., & Osborne, R. (1985). Lesson frameworks for changing children’s ideas. In R. Osborne & Freyberg (Eds.), Learning in science: the implications of children’s science (pp. 101-111). Aukland, New Zealand: Heinemann.
    Day, C., Pope., M. & Denicolo, P. (1990). Insights into teachers’ thinking and practice. New York: The Flamer Press.
    Driver, R.,Guesne, E.,Tiberghien, A.(1985). Children’s ideas in science. Milton Keynes : Open University Press.
    Duit, R., & Treagust, D. F. (1995). Students’conceptions and constructivist teaching app-roaches. In B. J. Fraser & H. J. Walberg (Eds.),Improving science education. Chicago: TheNationalSociety for theStudyofEducation.
    Fisher K.,M., & Lipson, J. I. (1985). Information Processing Interpretation of Errors in College Science Learning . Instructional Science , 14(1), 49-74.
    Fisher, K. M. (1983). Amino acid translation: A misconception in biology. In H. Helm & J. D. Novak (Eds.), Proceeding of the International Seminar: Misconceptions in Science and Mathematics(pp. 316-322). Ithaca, NY: Cornell University Press.
    Fisher, K. M., & Lipson, J. I. (1986). Twenty questions about student errors. Journal of Research in Science Teaching , 23(9), 783-803.
    Gilbert, J. K. Watts, M. & Osborne, R. J.(1982)Students’conceptions of ideas in mechanics. Physical Education, 17 , p62-66.
    Gilbert,J.K., & Watts,D.M.(1983). Concepts, Misconceptions and Alternative Conceptions: Changing Perspectives in Science Education. Studiesin Science Education, 10, 61-98.
    Harrison, A., & Treagust, D. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509-534.
    Head, J.(1986). Research into “alternative framework”: Promise and problems. Research in science and technological education , 4(2), 203-211.
    Hewson, M. G. & Hewson, P.W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning . Journal of Research in Science Teaching, 20(8), 731-743.
    Oversby, J. (2000).Models in explanations of chemistry , the case of acidity .UK : Reading Academic press.
    Johnson-Laird, P. N. (1983). Mental models. Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge, UK: Cambridge University Press.
    Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of Cognitive Science(pp. 467-499). Cambridge, MA: MIT Press.
    Johnson-Laird, P. N. (1995). Mental models, deductive reasoning, and the brain. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences(pp. 999-1008). Cambridge, MA: MIT Press.
    Kauffman, G.. B.(1988). The Bronsted-Lowery acid-base concept. Journal of Chemical Education, v65, 28-31.
    Mervis ,C.& Rosch, E. (1981): "Categorization of natural objects," Annual Review of Psychology 32, 89-115.
    Minstrell, J. (1982). Explaining the 'At Rest' Condition of an Object, Phys. Teacher, 20,10
    Nakhleh, M B.& Krajcik, J. S.(1993). A Protocol Analysis of the Influence of Technology on Students' Actions, Verbal Commentary, and Thought Processes During the Performance of Acid-Base Titrations. Journal of Research in Science Teaching, 30(9), 1149-1168 .
    Nakhleh, M. B.& Krajcik, J. S.(1994). Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts. Journal of Research in Science Teaching , 31 (10), 1077-1096.
    Norman, D. A. (1983). Some Observations on Mental Models . In Gentner, D., & Stevens, A. L. (1983). Mental Models. New Jersey and London:Lawrence Erlbaum.
    Novak, J. (1977). A Theory of Education. Ithaca: Cornell University Press.
    Novak, J. (1977). An alternative for Piagetian psychology for science and mathematics education. Science Education , 61(4), 453-550.
    Novak, J. (1988). Learning science and the science of learning. Studies in Science Education, 15, 77-101.
    Novak, J., & Gowin, D.B. (1984). Learn how to learn. New York: Cambridge University Press.
    Pella, M. O. (1966). Concept learning in science. The Science Teacher, 33(1), 31.
    Pella, M. O. (1975). Concept of concept. Univ. of Wisconsin-Madison.
    Pope, M. & Denicolo, P. (1986) Intuitive theories-a researcher’s Dilemma: some practical methodological implications. British Educational Research Journal, 12(2), 153-166.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-227.
    Posner, G. J. & Gertzon, W. A. (1982). The Clincal interview and the measurement of conceptual change. Science Education, 66(2), 195-210.
    Strike, K. A., & Posner G. J. (1992). A revisionist theory of conceptual change. In R. A.Duschl & R. J. Hamilton (Eds), Philosophy ofscience, cognitive psychology, and educationaltheory and practice (pp. 147-176). New York:State University of New York Press.
    Taber, K. S. (2000a). Multiple frameworks? : Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22, 399-417.
    Taber, K. S. (2000b). Case studies and generalisability - Grounded theory and research in science education. International Journal of Science Education, 22, 469-488.
    Taber, K. S. (2001a). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23, 731-753.
    Taber, K. S. (2002). .Intense, but it’s all worth it in the end.: The co-learner’s experience of the research process. British Educational Research Journal, 28, 435-457.
    Taber, K. S. (2003a). How Was It for You?: the dialogue between researcher and colearner.. Westminster Studies in Education, Jun2003, Vol. 26 Issue 1, p33, 12p.
    Taber, K. S. (2003b). Lost without trace or not brought to mind? –a case study of remembering and forgetting of college science. Chemistry education: research and practice, 2003, Vol. 4,NO. 3, pp. 249-277.
    Thagard, P. (1992a). Analogy , explanation and education. Journal of Research in Science Teaching, 29(6), 537-544.
    Thagard, P. (1992b). Conceptual revolutions. Princeton, NJ: Princeton University Press.
    Treagust, D.F., Duit. R,& Fraser, B.J.(1996). Improving Teaching and Learning in Science and Mathematics.New York : Teachers College Press.
    Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10 (2), 159-169.
    Treptow, R.S.(1986). The conjugate acid-base chart. Journal of Chemical Education, 63, 938-941.
    Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1996). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4), 387-404.
    Tytler, R. (1998a). The nature of students' informal science conceptions . International Journal of Science Education , 20(8), 901-927.
    Tytler, R. (1998b). Children's conceptions of air pressure : exploring the nature of conceptual change. International Journal of Science Education , 20(8), 929-958.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change . Learning and Instructing, 4, 45-69.
    Vosniadou, S., & Brewer, W. F. (1992). Mental Models of the Earth:A Study of Conceptual Change in Childhood. Cognitive Psychology, 24, 535-585.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and instruction, 4, 45-69.

    QR CODE