簡易檢索 / 詳目顯示

研究生: 游智越
You, Jhih-Yue
論文名稱: 車載網路中順流訊息傳遞修復延遲機率分布之分析
Analysis of Probability Distribution of Rehealing Delay for the Delivery of Downstream Messages in Vehicle Ad Hoc Networks
指導教授: 黃政吉
Huang, Jeng-Ji
口試委員: 黃政吉
Huang, Jeng-Ji
梁耀仁
Liang, Yao-Jen
熊大為
Shiung, David
口試日期: 2021/07/02
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 47
中文關鍵詞: 車載網路修復延遲網路斷開拉普拉斯轉換
英文關鍵詞: VANETs, repair delay time, network disconnection, Laplace transform
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101177
論文種類: 學術論文
相關次數: 點閱:99下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討車載網路(vehicle ad hoc networks, VANETs)中,一部車輛傳遞訊息到它的下游車輛時所需經歷的延遲。過去的相關研究已計算重建網路斷開之恢復延遲(rehealing delay);然而,它們多半只考慮上游的訊息傳遞。本論文延續我們之前關於下游訊息傳遞端到端延遲(end-to-end delay)的分析與討論,但採用不同的計算方法。這是因為我們之前的計算方法是針對長距離的端到端訊息傳遞;當端到端訊息傳遞為短距離時,則該分析方法將可能有很大的誤差。針對短距離之端到端訊息傳遞,本論文將首先計算修復單一網路斷開的恢復延遲機率分布。由於該計算可能包含數個隨機變數的加總,因此將利用Laplace轉換與其反轉換。數值結果顯示我們的計算是十分準確的。

    The delay incurred during which messages are transmitted by a vehicle to its downstream vehicles in a vehicle ad hoc networks (VANETs) is analyzed in this paper. In related works the recovery delay of rebuilding network disconnection has been calculated; however, most of them only consider upstream message transmissions. This work continues our previous research but uses a different analytical method. It is because our previous calculation method, in which the central limit theorem is used, is suitable for long distance message transmissions. When message transmissions are short-distance, previous analysis may lack good accuracy. Therefore, the recovery delay probability distribution for repairing a single network disconnection will first be calculated in this paper. Since the calculations include the sum of random variables, Laplace transform and its inverse transform will be used. Numerical results show that our analysis is very accurate.

    誌 謝.................................................................................................................................... i 中文摘要..............................................................................................................................ii 英文摘要.............................................................................................................................iii 目 錄.................................................................................................................................. iv 表 目 錄............................................................................................................................. v 圖 目 錄........................................................................................................................... vi 第一章 緒論.....................................................................................................................1 1.1車載網路與應用......................................................................................................1 1.2 車載網路之連接性.................................................................................................1 1.3 網路斷開之恢復延遲............................................................................................2 1.4 研究背景與動機.....................................................................................................2 1.5 論文章節安排.........................................................................................................3 第二章 相關背景知識...................................................................................................4 2.1條件機率分布..........................................................................................................4 2.2獨立的隨機變數相加.............................................................................................6 2.3 Laplace轉換與反轉換.......................................................................................12 第三章 數值分析與方法............................................................................................18 3.1 系統模型...............................................................................................................18 3.2 數值計算...............................................................................................................20 3.3 樹狀圖...................................................................................................................32 第四章 數值結果與討論............................................................................................33 4.1 (3.11)、(3.17)、與(3.26)之Laplace轉換.....................................................33 4.2 雙向車流密度相同..............................................................................................39 4.3 雙向車流密度不相同..........................................................................................39 第五章 結論..................................................................................................................41 參 考 文 獻....................................................................................................................42 附 錄 一...........................................................................................................................45

    [1] Uear, S., Ergen, S. C., and Ozkasap, O. 2016. “Multihop-Cluster-Based IEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message Dissemination.” IEEE Trans. Veh. Technol., 65(4): 2621-2636. doi:10.1109/TVT.2015.2421277.
    [2] Wang, M., Liang, H., Zhang, R., Deng, R., and Shen, X. 2014. “Mobility-Aware Coordinated Charging for Electric Vehicles in VANET-Enhanced Smart Grid.” IEEE J. Sel. Areas Commun., 32(7): 1344-1360. doi:10.1109/JSAC.2014.2332078.
    [3] Wang, M., Shan, H., Lu, R., Zhang, R., Shen, X., and Bai, F. 2014. “Real-Time Path Planning Based on Hybrid-VANET-Enhanced Transportation System.” IEEE Trans. Veh. Technol., 64(5): 1664-1678. doi:10.1109/TVT.2014.2335201.
    [4] Kaleem, M., Hussain, S. A., Raza, I., Chaudhry, S. R., and Hassan, M. 2015. “A Direction and Relative Speed (DARS) Based Routing Protocol for VANETs in a Highway Scenario.” J. Chin. Inst. Eng., 38(3): 399-405. doi:10.1080/02533839.2014.970354.
    [5] Fracchia, R., and Meo, M. 2008. “Analysis and Design of Warning Delivery Service in Intervehicular Networks.” IEEE Trans. Mobile Comput., 7(7): 832-845. doi:10.1109/TMC.2007.70756.
    [6] Miorandi, D., and Altman, E. 2006. “Connectivity in One-Dimensional Ad Hoc Networks: A Queueing Theoretical Approach.” Wirel. Netw., 12(5): 573-587. doi:10.1007/s11276-006-6536-z.
    [7] Mabiala, M., Busson, A., and Veque, V. 2007. “Inside VANET: Hybrid Network Dimensioning and Routing Protocol Comparison.” IEEE 65^th Vechicular Technology Conference (VTC2007-Spring), Dublin, Ireland, 22-25 April 2007: 227-232.
    [8] Yousefi, S., Altman, E., EI-Azouzi, R., and Fathy, M. 2007. “Connectivity in vehicular ad hoc networks in presence of wireless mobile base-stations.” 7^th International Conference on ITS Telecommunications, Sophia Antipolis, France, 6-8 June 2007.
    [9] Wu, H., Fujimoto, R. M., Riley, G. F., and Hunter, M. 2009. “Spatial Propagation of Information in Vehicular Networks.” IEEE Trans. Veh Technol., 58(1): 420-431. doi:10.1109/TVT.2008.923689.
    [10] Yousefi, S., Altman, E., EI-Azouzi, R., and Fathy, M. 2008. “Analytical Model for Connectivity in Vehicular Ad Hoc Networks. 57(6): 3341-3356. doi:10.1109/TVT.2008.2002957.
    [11] Zhuang, Y., Pan, J., Lou, Y., and Cai, L. 2011. “Time and Location-Critical Emergency Message Dissemination for Vehicular Ad-Hoc Networks.” IEEE J. Sel. Areas Commun., 29(1): 187-196. doi:10.1109/JSAC.2011.110118.
    [12] Sou, S.-I., and Lee, Y. 2014. “End-to-End Performance for SCF-Based Vehicular Routing over Multiple Communication Gaps.” IEEE Commun. Lett., 18(6): 1015-1018. doi:10.1109/LCOMM.2014.2315817.
    [13] Wistpongphan, N., Bai, F., Mudalige, P., Sadekar, V., and Tonguz, O. 2007. “Routing in Sparse Vehicular Ad Hoc Wireless Networks.” IEEE J. Sel. Areas Commun., 25(8): 1538-1556. doi:10.1109/JSAC.2007.071005.
    [14] Huang, J.-J. 2015. “Accurate Probability Distribution of Rehealing Delay in Sparse VANETs.” IEEE Commun. Lett., 19(7): 1193-1196. doi:10.1109/LCOMM.2015.2426716.
    [15] Huang, J.-J. and Tseng, Y.-T. 2018. “The Steady State Distribution of Rehealing Delay in an Intermittently Connected Highway VANET.” IEEE Trans. Veh. Technol., 67(10): 10010-10021. doi:10.1109/TVT.2018.2865500.
    [16] Huang, J.-J., and Wang, P.-W. 2018. “Analysis of Rehealing Delivery of Downstream Messages in Sparse Highway Vehicular Ad Hoc Networks.” International Journal of Electrical Engineering, 25(6): 235-240. doi:10.6329/CIEE.201812_25(6).0003.
    [17] Huang, J.-J., Chen, T.-Y., Ferng, H.-W., Liang, Y.-J., Kuo, C.-G., Shiung, D., and Su, C.-Y. 2020. “A delay analysis for the delivery of downstream messages in a sparse VANET,” Journal of the Chinese Institute of Engineers, 43(6):499-507. doi: 10.1080/02533839.2020.1771206.
    [18] Benslimane, A., Taleb, T., and Sivaraj, R. 2011, “Dynamic Clustering-Based Adaptive Mobile Gateway Management in Integrated Vanet-3G Heterogeneous Wireless Networks,” IEEE J. Sel. Areas Commun., 29(3): 559-570. doi:10.1109/JSAC.2011.110306.
    [19] Jahangiri, A., Berardi, V. J., and Machiani, S. G. 2018, “Application of Real Field Connected Vehicle Data for Aggressive Driving Identification on Horizontal Curves,” IEEE Trans. Intell. Transp. Syst., 19(7): 2316-2324. doi:10.1109/TITS.2017.2768527.
    [20] Zhang, Z., Mao, G., and Anderson, B. D. O. 2011. “On the Information Propagation Process in Mobile Vehicular Ad Hoc Network.” IEEE Trans. Veh. Technol., 60(5): 2314-2325. doi:10.1109/TVT.2011.2145012.
    [21]Joseph, A., and Ward, W. 2006. “A Unified Framework for Numerically Inverting Laplace Transforms.” Informs Journal on Computing,18(4):407-530. doi: 10.1287/ijoc.1050.0137.

    下載圖示
    QR CODE