研究生: |
廖宇庭 Liao, Tu-Ting |
---|---|
論文名稱: |
變場及低場核磁共振系統於人類肝癌組織檢測應用與特性研究 The Application and Characteristics in Human Liver Tumor Tissue Discrimination of Fast-Field Cycling Nuclear Magnetic Resonance and Low-Field Nuclear Magnetic Resonance System |
指導教授: |
廖書賢
Liao, Shu-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 變場式核磁共振儀 、低場核磁共振系統 、R1弛緩速率 、腫瘤檢測 |
英文關鍵詞: | Fast-field-Cycling NMR, Low-field NMR, Relaxation rate (R1), Tumor detection |
DOI URL: | http://doi.org/10.6345/NTNU201900871 |
論文種類: | 學術論文 |
相關次數: | 點閱:194 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在手術當中的緊急狀況會採用較快速的切片如冷凍切片,此方式需要病理醫師進行判斷,並非容易取得的方式,因此需要一個快速量化的方法。所以本研究使用了變場式核磁共振儀與低場核磁共振系統來進行核磁共振的參數量測,透過變場的量測得到不同頻率下腫瘤組織與正常組織的R1,並且建立了R1與頻率之間的關係,也驗證各個頻率下使用R1來進行腫瘤分辨的可行性。接著使用實驗室的低場核磁共振系統進行了30組樣品的量測,從結果得到腫瘤組織與正常組織在R1上有顯著的分辨,顯示了低場在腫瘤組織臨床應用有可行性,未來有機會提供量化的腫瘤檢測。
Emergency situations during surgery use faster sections such as cryosections, which requires a pathologist to make judgments that are not readily available, and therefore require a rapid quantification method. So, this study use Fast-Field Cycling Nuclear Magnetic Resonance (FFC-NMR) and Low-Field Nuclear Magnetic Resonance (LF-NMR) to measure the NMR parameters. Through the measurement of the variable field, the R1 of tumor tissue and normal tissue at different frequencies were obtained, and established the relationship of R1 and frequency. The relationship between the two also verifies the feasibility of using R1 for tumor discrimination at each frequency. Then, using low-field NMR system of our laboratory, 30 sets of samples were measured. From the results, the tumor tissue and normal tissue were significantly distinguished on R1, indicating that the low-field NMR system is feasible in clinical application of tumor tissue. It is possible to provide quantitative tumor detection in the future.
[1]Rockey, D. C., Caldwell, S. H., Goodman, Z. D., Nelson, R. C. and Smith, A. D, “ Liver biopsy “, Hepatology, 49: 1017-1044 (2009)
[2]Erin Brender, MD,” Frozen Section Biopsy “, 3200 JAMA, December 28, 2005—Vol 294, No. 24 (2005)
[3]April M. Chow PhD Darwin S. Gao BEng Shu Juan Fan MSc Zhongwei Qiao MD Frank Y. Lee BEng Jian Yang MD, PhD Kwan Man PhD Ed X. Wu PhD, “ Measurement of liver T1 and T2 relaxation times in an experimental mouse model of liver fibrosis “, J. Magn. Reson. Imaging, 36: 152-158 (2012)
[4]Raymond Damadian, Ken Zaner, Doris Hor, Theresa DiMaio, “Human Tumors Detected by Nuclear Magnetic Resonance”, Proc. Nat. Acad. Sci. USA Vol. 71, No. 4, pp. 1471-1473 (1974)
[5]鄧羽珊(2013)。《小型低場磁振造影系統之架設與特性研究》。國立臺灣師範大學光電科技研究所,台北市。
[6]周彥廷(2014)。《低磁場核磁共振梯度接收線圈應用於肝腫瘤組織檢驗》。國立臺灣師範大學光電科技研究所碩士論文,台北市。
[7]黃逸群(2015)。《低場核磁共振系統及其肝癌檢測應用》。國立台灣師範大學光電科技研究所碩士論文,台北市。
[8]陳致豪(2017)。《低場磁振造影於生物組織影像之特性研究》。國立台灣師範大學光電科技研究所碩士論文,台北市。
[9]陳彥呈(2018)。《低場核磁共振系統於乳癌組織檢測應用與特性研究》。國立台灣師範大學光電科技研究所碩士論文,台北市。
[10]Shu-Hsien Liao, Kai-Wen Huang, Hong-Chang Yang*, Chang-Te Yen, M. J. Chen, Hsin-Hsien Chen, Herng-Er Horng*, and Shieh Yueh Yang, “Characterization of tumors using SQUID-detected nuclear magnetic resonance and imaging”,Appl. Phys. Lett. 97, 263701 (2010)
[11]Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
[12]S. H. Liao, H. E. Horng, H. C. Yang, and S. Y. Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetometer”, J. Appl. Phys., vol. 102, 033914(2007)
[13]Liao, Shu-Hsien, et al. "Signal analysis and liver tumor discrimination by using a high-T c SQUID-based low-field NMR system in hospital." IEEE Transactions on Applied Superconductivity 25.3: 1-4. (2015)
[14]Joseph P. Hornak, Ph.D. (1996-2011),The Basics of MRI, 2019年3月5日取自於http://www.cis.rit.edu/htbooks/mri/
[15]Bradley, Christopher J. Lisanti (2004)。《基礎磁振造影》。莊奇容。台北市:合記圖書出版社。
[16]Rainer Kimmich, Esteban Anoardo, “Field-cycling NMR relaxometry”, Progress in Nuclear Magnetic Resonance Spectroscopy 44:257–320(2004)
[17]Ion-Christian Kiricuta Jr., Virgil Simplăceanu, “Tissue Water Content and Nuclear Magnetic Resonance in Normal and Tumor Tissues”, Cancer Research, 35.5:1164-1167, May (1975)
[18]” Macromolecules”, Questions and Answeres in MRI, 2019年7月3日取自於http://mriquestions.com/macromolecule-effects.html
[19]陳采榛(2014)。《利用快速場循環式核磁共振儀探討抗菌胜肽對磷脂膜上分子動態學的影響》。國立中正大學化學暨生物化學研究所,台北市。
[20]劉威廷(2014)。《以場循環核磁共振儀研究鈣離子對磷脂質/膽固醇混合膜上分子動態學之影響》。國立中正大學化學暨生物化學研究所,台北市。
[21]E. Anoardo*, G. Galli, and G. Ferrante, “Fast-Field-Cycling NMR: Applications and Instrumentations”, Appl. Magn. Reson. 20:365-404 (2001)
[22]Bertil R.R. Persson, Lars Malmgren, Leif G. Salford, "Paramagnetic Ions Affect Relaxation Rate Dispersion of Blood:Implications for Magnetic Resonance Relaxation Dispersion Imaging", J Bioengineer & Biomedical Sci, 2(105), 2 (2012) Ray H. Hashemi, William G.
[23]John Clarke, Michael Hatridge, and Michael M¨ oßle, “SQUID-Detected Magnetic Resonance Imaging in Microtesla Fields”, Annu. Rev. Biomed. Eng 9:389–413 (2007)
[24]J. Clarke, M. Hatridge, and M. Mößle, “Resonance imaging in Microtesla”, Annu. Biomed. Eng., vol. 9,389(2007)
[25]S. H. Liao, H. C. Yang, H. E. Horng, S. Y. Yang, H. H. Chen,D. W. Hwang, and L. P. Hwang, “Sensitive J-coupling spectroscopy using high-Tc superconducting quantum interference devices in magnetic fields as low as microteslas,” Supercond. Sci. Technol., vol. 22,045008(2009)
[26]R. McDermott, A. H. Trabesinger, M. Mück, E. L. Haln, A. Pines, and J. Clarke, “Liquid-state NMR and scalar couplings in microtesla magnetic fields”, Science, vol. 295, 2247(2002)
[27]M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, Applied Superconductivity conference, Aug. 27-Sept.1, Seattle, Washington, USA.(2016)
[28]M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, “Nuclear magnetic resonance in the nanoTesla range”, App. Phys. Lett., vol. 87, 054103(2005)
[29]Y. Zhang, L. Qiu, H. Krause, S. Hartiwig, M. Burghoff, and L. Trahms,“Liquid state nuclear magnetic resonance at low fields using a nitrogencooled superconducting quantum interference device”, Appl. Phys. Lett.,vol. 90,182503(2007)
[30]Y. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance”, Rev. Mod. Phys., vol. 70, 175(2002)
[31]L. Qiu, Y. Zhang, H. J. Krause, A. H. Braginski, M. Burghoff, and L. Trahms, “Nuclear magnetic resonance in the earth’s magnetic field using a nitrogen-cooled superconducting quantum interference device”, Appl. Phys. Lett., vol. 91, 072505(2007)
[32]K. Schlenga, R. McDermott, J. Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, “Low-field magnetic resonance imaging with a high- Tc dc superconducting quantum interference device”, Appl. Phys. Lett., vol. 75,3695(1999)
[33]H. C. Yang, S. H. Liao, H. E. Horng, S. L. Kuo, H. H. Chen, and S. Y. Yang, “Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device”, Appl. Phys. Lett., vol. 88,252505(2006)
[34]王莹,"基于纵向弛豫时间的低场磁共振无创测温技术的研究"北京生物醫學工程, 27.6:587-590(2008)
[35]Araya, Yonathan T., "Nuclear magnetic relaxation dispersion of murine tissue for development of T1 (R1) dispersion contrast imaging." NMR in Biomedicine 30.12:e3789 (2017)