Basic Search / Detailed Display

Author: 葉育慈
Yeh, Yu-Tzu
Thesis Title: 螢光量子點應用於氣體感測器之研製
Research and Fabrication of Gas Sensors Employing Fluorescent Quantum Dots
Advisor: 呂家榮
Lu, Chia-Jung
Committee: 呂家榮
Lu, Chia-Jung
劉茂煌
Liu, Mao-Huang
王志嘉
Wang, Chih-Chia
Approval Date: 2024/01/31
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2024
Academic Year: 112
Language: 中文
Number of pages: 89
Keywords (in Chinese): 量子點奈米銀光致發光揮發性有機化合物
Keywords (in English): Quantum Dots, Silver nanoparticle, Photoluminescence, Volatile Organic Comounds
Research Methods: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400730
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 86Downloads: 1
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究使用 CdSe/ZnS 量子點作為材料,結合自製微型光學感測器的紙張型感測器,以材料光致發光的特性檢測揮發性有機化合物 (Volatility Organic Compound,VOC) 的紙片型感測器。微型光學感測器使用市售之綠光感測器結合雙低通濾波放大電路,與光譜儀相比,大幅降低了成本。本研究做幾項影響因素的探討,包含光源的選擇、感測器的比較及其數據計算方式,成功的測量七種有機氣體於爆炸下限 1/10 的濃度,其結果具有良好的再現性及穩定性,線性迴歸係數大多大於 0.99。
    奈米銀具有奈米金屬增強螢光之特性,因此在本研究中還觀察 CdSe/ZnS 量子點混合奈米銀 Ag@C16 之螢光強度變化,結果為混合 Ag@C16 的量子點對有機氣體的選擇性及螢光強度的增強無太大的幫助,其可能原因為量子點溶液被稀釋或量子點與奈米銀的距離不適當所導致的。而此感測器對於水也有良好的反應及再現性,使其亦有潛力成為濕度感測器。最後,在本研究中,通過氣體吸附與表面反應、電荷轉移機制等方式,去探討量子點接觸氣體後螢光上升的可能機制。

    In this study, a paper-type sensor using CdSe/ZnS quantum dots in combination with a micro-optical sensor was used to detect volatile organic compounds (VOCs) using the photoluminescent property of the material. The miniature optical sensor uses a commercially available green light sensor combined with a dual low-pass filter amplifier circuit, which significantly reduces the cost compared to a spectrometer. In this study, several influencing factors were investigated, including the choice of light source, the comparison of sensors, and the calculation of data, and seven organic gases were successfully measured at a concentration of 1/10 of the lower explosive limit, with good reproducibility and stability, and most of the linear regression coefficients were greater than 0.99.
    Nano-silver has the property of nano-metal to enhance the fluorescence, so in this study, we also observed the fluorescence intensity change of CdSe/ZnS quantum dots mixed with nano-silver Ag@C16, and the result was that the quantum dots mixed with Ag@C16 did not help much in the selectivity of the organic gases and the enhancement of the fluorescence intensity, and the probable reason was that the quantum dots were diluted in the solution or the distance between the dots and the nano- III silver was not appropriate. This sensor also has good response and reproducibility to water, which makes it a potential humidity sensor. Finally, in this study, the possible mechanisms of the fluorescence rise of the quantum dots after contacting with gas are investigated through gas adsorption and surface reaction and the charge transfer mechanism.

    中文摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1研究背景與動機 1 1.2奈米材料的基本性質 3 1.2.1奈米材料 3 1.2.2小尺寸效應 4 1.2.3表面效應 5 1.2.4 量子尺寸效應 6 1.2.5 奈米材料之製備 7 1.3 量子點 9 1.4 螢光的原理與應用 10 1.4.1 螢光的原理與性質 10 1.4.2 量子點的螢光機制 12 1.4.3 奈米金屬增強螢光效應 13 1.4.4 奈米金屬增強螢光效應之應用 15 1.4.5 量子點螢光應用於有機氣體感測 17 第二章 實驗部分 20 2.1 實驗藥品、器材與儀器設備 20 2.1.1 實驗藥品 20 2.1.2 實驗器材 22 2.1.3 儀器設備 24 2.2 有機相奈米銀粒子(Ag@C16) 的製備及實驗架構 30 2.3 奈米銀粒子與量子點感測器製作流程 33 2.4 實驗架構 34 2.5 光譜儀感測之架設 35 2.5.1 光譜儀感測之組裝 35 2.5.2 光譜儀參數設定 36 2.5.3 光譜儀感測之 LabVIEW 數據處理 37 2.5.4 氣體生成系統裝置 40 2.6 自組式螢光感測器 43 2.6.1 螢光感測器架設 43 2.6.2 螢光感測器電路設計 44 2.6.3 螢光感測器之 LabVIEW 程式撰寫 46 2.6.4 數據處理之 LabVIEW 程式撰寫 48 第三章 實驗結果與討論 51 3.1 CdSe/ZnS 量子點與奈米銀之性質分析 51 3.1.1 UV-Vis 吸收光譜及螢光光譜儀分析51 3.1.2 TEM 圖譜及圖譜及 DLS 鑑定 55 3.2 自組裝螢光感測器感測方式分析 57 3.2.1 不同光源之比較 57 3.2.2 不同光學感測器量測之比較 61 3.2.3 不同數據計算方式 65 3.3 CdSe/ZnS 量子點對有機氣體之感測 66 3.4 CdSe/ZnS 量子點與奈米銀混合之探討 69 3.5 CdSe/ZnS 量子點對水氣之感測 73 3.6 反應機制探討 78 第四章 結論與未來展望 82 參考文獻 83

    Kenny, T. (2005). CHAPTER 7 – Chemical Sensors. In J. S. Wilson (Ed.), Sensor Technology Handbook (pp. 181-191). Burlington: Newnes.
    Klein, R. C., King, C., & Labbie, P. (2004). Solvent Vapor Concentrations Following Spills in Laboratory Chemical Hoods. Chemical Health & Safety, 11(2), 4-8. DOI: 10.1016/j.chs.2003.10.004
    Nakashima, H., Nakajima, D., Takagi, Y., & Goto, S. (2007). Volatile organic compound (VOC) analysis and anti-VOC measures in water-based paints. Journal of Health Science, 53(3), 311-319
    Jiang, R., Tran, D. T., McClure, J. P., & Chu, D. (2015). Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst. ACS Applied Mater Interfaces, 7(33), 18530-18539. DOI: 10.1021/acsami.5b04714.
    Teh, J. J., Ting, S. L., Leong, K. C., Li, J., & Chen, P. (2013). Gallium-doped tin oxide nano-cuboids for improved dye-sensitized solar cell. ACS Appl Mater Interfaces, 5(21), 11377-11382. DOI: 10.1021/am403640s.
    Ho, M. L., Liu, W. F., Tseng, H. Y., Yeh, Y. T., Tseng, W. T., Chou, Y. Y., Pan, S. W. (2020). Quantitative determination of leukocyte esterase with a paper-based device. RSC Adv, 10(45), 27042-27049. DOI: 10.1039/d0ra03306e.
    Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling, and sensing. Nature Materials, 4(6), 435–446
    Gaur, M., Misra, C., Yadav, A. B., Swaroop, S., Maolmhuaidh, F. O., Bechelany, M., & Barhoum, A. (2021). Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials (Basel), 14(20). DOI: 10.3390/ma14205978.
    Chaban, V. V., Prezhdo, V. V., & Prezhdo, O. V. (2013). Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study. J Phys Chem Lett, 4(1), 1-6. DOI: 10.1021/jz301878y.
    Bauri, S., Tripathi, S., Choudhury, A. M., Mandal, S. S., Raj, H., & Maiti, P. (2023). Nanomaterials as Theranostic Agents for Cancer Therapy. ACS Applied Nano Materials, 6(23), 21462-21495. DOI: 10.1021/acsanm.3c04235.
    李言榮, 惲正中. (2003). 材料物理學概論. 五南圖書
    馬振基. (2005). 奈米材料科技原理與應用. 全華科技圖書
    Pollack, H. W. (1988). Materials science and metallurgy, 4th Edition. Pearson
    Roduner, E. (2006). Size matters: why nanomaterials are different. Chem. Soc. Rev., 35(7), 583-592.
    Kubo, R. (1962). Electronic properties of metallic fine particles. I. Journal of the Physical Society of Japan, 17(6), 975-986.
    Hong, K., Le, Q. V., Kim, S. Y., & Jang, H. W. (2018). Low-dimensional halide perovskites: review and issues. J. Mater. Chem. C., 6(9), 2189-2209
    高麗婷. (2019). 表面修飾不同型態奈米銀應用於表面電漿共振有機氣體感測器之研究. 國立臺灣師範大學化學系.
    Murphy, C. J., & Jana, N. R. (2002). Advanced Materials, 14(1), 80-82.
    Chen, Z., Balankura, T., Fichthorn, K. A., & Rioux, R. M. (2019). ACS Nano, 13(2), 1849-1860.
    Rawat, R. S. (2015). Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology. Journal of Physics: Conference Series, 591, 012021
    Brust, M., Walker, M., Bethell, D., Shiffrin, D., & Whyman, R. (1994). Journal of the Chemical Society, Chemical Communications, 801.
    Rajabi, H. R. (2016). Photocatalytic Activity of Quantum Dots. In Semiconductor Photocatalysis - Materials, Mechanisms and Applications.
    Vansark, W. G. J. H. M., Frederix, P. L. T. M., Bol, A. A., Gerritsen, H. C., & Meijerink, A. (2002). ChemPhysChem, 3, 871.
    Cordero, S. R., P. J., Carson, P. J., et al. (2008). The Quantum Dot-Alkaline Phosphatase Nanosystem Achieves Extracellular Phosphorylation of the Peptide Substrate. Nano Letters, 8(2), 546–551.
    Mekis, I., Talapin, D. V., Kornowski, A., Haase, M., & Weller, H. (2003). J. Phys. Chem. B, 107, 7454
    Kim, T., Yoon, C., Song, Y. G., Kim, Y. J., & Lee, K. (2016). J. Lumin., 177, 54.
    Chang, Y. J., Yao, X. D., Zhang, Z. P., Jiang, D. L., Yu, Y. L., Mi, L. F., Wang, H., Li, G. P., Yu, D. B., & Jiang, Y. J. (2015). J. Mater. Chem. C, 3, 2831.
    Skoog, D. A., Holler F. J., & Crouch S. R. (2017). Principles of Intrumental Analysis, 7th Edition, Cengage Learning.
    Zimmermann, J., Zeug, A., & Röder, B. (2003). Chem. Phys, 5(14), 2964–2969.
    McGOWN, L. B., & Nithipatikom, K. (2000). Molecular Fluorescence and Phosphorescence, 353-393.
    Chan, W. C. W., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., Nie, S. (2002). Current Opinion in Biotechnology, 13(1), 40–46.
    Nazzal, A. Y., Qu, L., Peng, X., & Xiao, M. (2003). Nano Letters, 3(6), 819–822.
    Yang, X., Xu, R., Bao, D., & Li, B. (2014). Gold nanorod-enhanced light emission in quantum-dot-doped polymer nanofibers. ACS Appl Mater Interfaces, 6 (15), 11846-11850. DOI: 10.1021/am503580j From NLM PubMed-not-MEDLINE.
    Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J. R., Geddes, C. D. (2005). Current Opinion in Biotechnology, 16(1), 55-62.
    Aslan, K., Lakowicz, J.R., & Szmacinski, H. (2004). Journal of Fluorescence, 14, 677–679.
    Kwan, R. C., Hon, P. Y., Mak, W. C., Law, L. Y., Hu, J., Renneberg R., (2006). Biosensors and Bioelectronics, 21(7), 1101-6.
    蘇育政; 江惠華; 洪敏偉. (2009). 科儀新知, 69-76.
    Hong, G. S., Tabakman, S. M., Welsher, K., Wang, H., Wang, X., Dai, H. (2010). Metal-Enhanced Fluorescence of Carbon Nanotubes. J. Am. Chem. Soc., 132(45), 15920-15923. DOI: 10.1021/ja1087997.
    Tobias, A. K., & Jones, M. (2019). Metal-Enhanced Fluorescence from Quantum Dot-Coupled Gold Nanoparticles. J. Phys. Chem. C., 123, 1389−1397.
    Nazzal, A. Y., Qu, L., Peng, X., & Xiao, M. (2003). Nano Letters, 3(6), 819–822
    Xue, S., Jiang, X. F., Zhang, G., Wang, H., Li, Z., Hu, X., ... Xing, X. (2020). ACS Sensors, 5(4), 1002–1009.
    張雅淇. (2021). 距離調控式奈米銀增強螢光的感測機制應用於紙片型光學感測器之研製. 國立臺灣師範大學化學系.
    呂泉. (2006). 現代傳感器原理及應用, 清華大學出版社, 228.
    Kamat, P. V.; Barazzouk, S.; Hotchandani, S. (2002). Angewandte Chemie International Edition, 41(15), 2764-2767.
    Yuan, B.; Zhang, X.; Yu, J.; Zhou, L.; Luo, B.; Liu, Y.; Chen, R. (2022). Optical Humidity Sensor Based on CdSe/ZnS Quantum Dots Modified by Porous Silica. Advanced Materials Interfaces, 9(29). DOI: 10.1002/admi.202201366.
    Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. (2019). Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv Mater, 31(34), e1804294. DOI: 10.1002/adma.201804294 From NLM PubMed-not-MEDLINE.
    Cordero, S. R.; Carson, P. J.; Estabrook, R. A.; Strouse, G. F.; Buratto, S. K. (2000). Photo-Activated Luminescence of CdSe Quantum Dot Monolayers. J. Phys. Chem. B, 104(51), 12137–12142.
    Pechstedt, K.; Whittle T.; Baumberg J.; Melvin T. (2010). Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. J. Phys. Chem. C, 114, 12069–12077.
    Lin, Z., Liao, F., Zhu, L., Lu, S., Sheng, M., Gao, S., & Shao, M. (2014). Visible light enhanced gas sensing of CdSe nanoribbons of ethanol. CrystEngComm, 16(20). DOI: 10.1039/c3ce42577k.
    Mishra, R. K., Choi, G. J., Choi, H. J., & Gwag, J. S. (2021). ZnS Quantum Dot Based Acetone Sensor for Monitoring Health-Hazardous Gases in Indoor/Outdoor Environment. Micromachines (Basel), 12(6). DOI: 10.3390/mi12060598. From NLM PubMed-not-MEDLINE.

    下載圖示
    QR CODE