簡易檢索 / 詳目顯示

研究生: 劉姿延
Liu, Tzu-Yen
論文名稱: 海洋酸化對黑點青鱂魚生理恆定及表觀遺傳修飾之影響評估
Effects of ocean acidification on physiological homeostasis and epigenetic modification in Oryzias melastigma
指導教授: 林豊益
Lin, Li-Yih
曾庸哲
Tseng, Yung-Che
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 55
中文關鍵詞: 海洋酸化海水青鱂魚酸鹼調控表觀遺傳
英文關鍵詞: ocean acidification, marine medaka, acid-base regulation, epigentic
DOI URL: https://doi.org/10.6345/NTNU202202342
論文種類: 學術論文
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業革命後人類的現代化活動造成大氣中二氧化碳濃度逐漸上升,當二氧化碳溶入海水會解離出碳酸根離子與氫離子,造成海水的 pH 值下降,這個現象稱為「海洋酸化」。許多研究指出:海洋酸化會影響海洋生物的存活率、 多樣性及生理恆定,因此被認為是個全球性的環境議題。
    本實驗選用海水青鱂魚(Oryzias melastigma)作為長期高碳酸馴養試驗的模式魚種,實驗結果有別於過去在廣鹽性日本青鱂魚的發現,其胚胎並無發育遲緩的現象,而酸化處理後的胚胎個體及成魚的鰓與腸中之酸鹼離子調控蛋白群(AE1a、 NBCa 及 NHE2)基因表現量均會顯著上升。此外,在酸化海水發育成熟的個體卵巢中, AE1a 的啟動子甲基化程度會顯著提升。而酸化個體產下之 F1 子代酸鹼離子調控蛋白群的啟動子並未有顯著甲基化的趨勢,其基因表現量與排氫離子能力仍保持顯著提升。綜合以上結果我們推論:硬骨魚母體可能透過表觀遺傳的機制將生理適應訊息傳遞給子代,子代為了適應酸化環境會進而修飾啟動子的甲基化程度,並且持續增強酸鹼調節的能力;此外, AE1a、 NBCa 和 NHE2 為硬骨魚類調控酸鹼平衡之主要蛋白,並且能夠作為觀察表觀遺傳現象之有效生物標記。

    Ocean acidification (OA) has been recently recognized as an emerging global stressor, potentially affecting ecosystems’ biodiversity, concordance and functions. Studies regarding the effects of OA on marine organisms have been primarily conducted in laboratory; nevertheless, long-term physiological consequences regarding OA perturbations is still an unexplored issue. In this study, we further applied India medaka (Oryzias melastigma) into CO2-induced hypercapnia challenges. Growth retardation in this marine species is not as significant as previous found in euryhaline Japanese medaka (Oryzias latipes). Moreover, transcripts levels of anion exchanger 1a (AE1a), Na+/HCO3- exchanger a (NBCa) and Na+/H+-exchanger 2 (NHE2) were up-regulated in larvae as well as in adult gills/intestine under OA perturbation. And the methylation level in AE1a promoter was significantly increased in parental ovary of CO2-treated group. However, on one hand, methylation levels of those promoters in the OA-treated F1 offspring were not changed. On the other hands, transcripts levels of acid-base regulators and the H+ secretion ability were kept on upregulated in OA-treated F1 offspring. Based on above results, we inferred that the parent may pass the genetic messages from the primary generation with epigenetic modifications; therefore, their progeny might be endowed with possible capacities to cope with OA perturbations. In addition, AE1a, NBCa and NHE2 can effectively maintain intact homeostasis and be used as markers of epigenetic memory for teleosts to cope with OA stress.

    摘要 3 Abstract 4 Introduction 6 Ocean acidification 6 Effects of OA on marine organisms 7 Intergenerational effects under high pCO2 environment 9 Propose of this study 11 Materials and methods 13 Experimental animals 13 CO2-drived seawater 13 Experimental design 14 Growth parameters and basal metabolism 15 Purification of total RNA 17 Reverse-transcription polymerase chain reaction (RT-PCR) analysis 17 Real-time quantitative PCR (qPCR) analysis 18 Purification of genomic DNA 19 Tissue Methylated DNA immunoprecipitation (MeDIP) analysis 20 Scanning Ion-selective Electrode Technique (SIET) 21 Statistical analysis 22 Results 23 Effects of ocean acidificattion on ontogeny and basal metabolism 23 Transcripts expressions of acid-base regulators in stage 34-35 (5 dpf) embryos and hatchlings 24 Transcripts expressions of acid-base regulators in gill and intestine 24 The methylation aspect of epigenetic modification in teleost under OA 25 Transcripts experssions of acid-base regulators and H+ excretion capacity in embryos throughout generations 26 Discussdion 28 The impact of ocean acidification on physiological homeostasis in teleost 28 The conjunction of epigentic modification and ocean acidification 32 Conclusion 35 Reference 36 Table and Figures 42

    Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human molecular genetics, 9(16), 2395-2402.
    Bhadury, P. (2015). Effects of ocean acidification on marine invertebrates-a review. Indian Journal of Geo-Marine Sciences, 44(4), 454-464.
    Bignami, S., Sponaugle, S., & Cowen, R. K. (2014). Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus. Aquatic Biology, 21(3), 249-260.
    Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & development, 16(1), 6-21.
    Boyko, A., Kathiria, P., Zemp, F. J., Yao, Y., Pogribny, I., & Kovalchuk, I. (2007). Transgenerational changes in the genome stability and methylation in pathogen-infected plants (virus-induced plant genome instability). Nucleic acids research, 35(5), 1714-1725.
    Bromhead, D., Scholey, V., Nicol, S., Margulies, D., Wexler, J., Stein, M., Hoyle, S., Cleridy, L. C., Williamson, J., Havenhand, J., Ilyina, T.& Lehodey, P. (2015). The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Research Part II: Topical Studies in Oceanography, 113, 268-279.
    Chinnusamy, V., & Zhu, J.-K. (2009). Epigenetic regulation of stress responses in plants. Current opinion in plant biology, 12(2), 133-139.
    Choi, C.-S., & Sano, H. (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetics and Genomics, 277(5), 589-600.
    Dupont, S., Havenhand, J., Thorndyke, W., Peck, L., & Thorndyke, M. (2008). Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series, 373, 285-294.
    Enzor, L. A., Zippay, M. L., & Place, S. P. (2013). High latitude fish in a high CO 2 world: Synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164(1), 154-161.
    Esbaugh, A. J., Heuer, R., & Grosell, M. (2012). Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta. Journal of Comparative Physiology B, 182(7), 921-934.
    Fabry, V. J., Seibel, B. A., Feely, R. A., & Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science: Journal du Conseil, 65(3), 414-432.
    Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., & Hales, B. (2008). Evidence for upwelling of corrosive" acidified" water onto the continental shelf. Science, 320(5882), 1490-1492.
    Fitzer, S. C., Caldwell, G. S., Close, A. J., Clare, A. S., Upstill-Goddard, R. C., & Bentley, M. G. (2012). Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. Journal of Experimental Marine Biology and Ecology, 418, 30-36.
    Flynn, E. E., Bjelde, B. E., Miller, N. A., & Todgham, A. E. (2015). Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish. Conservation Physiology, 3(1), cov033.
    Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S., & Buddemeier, R. (1998). Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change, 18(1), 37-46.
    Gazeau, F., Parker, L. M., Comeau, S., Gattuso, J.-P., O’Connor, W. A., Martin, S., Pörtner, H.-O. & Ross, P. M. (2013). Impacts of ocean acidification on marine shelled molluscs. Marine Biology, 160(8), 2207-2245.
    Gibson, R., Atkinson, R., Gordon, J., Smith, I., & Hughes, D. (2011). Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev, 49, 1-42.
    Guerrero-Bosagna, C., Settles, M., Lucker, B., & Skinner, M. K. (2010). Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PloS one, 5(9), e13100.
    Haugan, P. M., & Drange, H. (1996). Effects of CO2 on the ocean environment. Energy Conversion and Management, 37(6), 1019-1022.
    Holeski, L. M., Jander, G., & Agrawal, A. A. (2012). Transgenerational defense induction and epigenetic inheritance in plants. Trends in ecology & evolution, 27(11), 618-626.
    Hosfeld, C. D., Engevik, A., Mollan, T., Lunde, T. M., Waagbø, R., Olsen, A. B., Breck, O., Stefansson, S. & Fivelstad, S. (2008). Long-term separate and combined effects of environmental hypercapnia and hyperoxia in Atlantic salmon (Salmo salar L.) smolts. Aquaculture, 280(1), 146-153.
    Hsu, H.-H., Lin, L.-Y., Tseng, Y.-C., Horng, J.-L., & Hwang, P.-P. (2014). A new model for fish ion regulation: identification of ionocytes in freshwater-and seawater-acclimated medaka (Oryzias latipes). Cell and tissue research, 357(1), 225-243.
    Ishimatsu, A., Hayashi, M., & Kikkawa, T. (2008). Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series, 373, 295-302.
    Kim, B.-M., Kim, J., Choi, I.-Y., Raisuddin, S., Au, D. W., Leung, K. M., Wu, R.-S., Rhee, J.-S.& Lee, J.-S. (2016). Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research. Marine environmental research, 113, 141-152.
    Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., & Robbins, L. L. (2005). Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Paper presented at the Report of a workshop held.
    Kroeker, K. J., Kordas, R. L., Crim, R. N., & Singh, G. G. (2010). Meta‐analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology letters, 13(11), 1419-1434.
    Labra, M., Ghiani, A., Citterio, S., Sgorbati, S., Sala, F., Vannini, C., Ruffini-Castiglione, M.& Bracale, M. (2002). Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biology, 4(06), 694-699.
    Lannig, G., Eilers, S., Pörtner, H. O., Sokolova, I. M., & Bock, C. (2010). Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Marine drugs, 8(8), 2318-2339.
    Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., . . . Boden, T. (2015). Global carbon budget 2015. Earth System Science Data, 7(2), 349-396.
    Liu, S.-T., Horng, J.-L., Chen, P.-Y., Hwang, P.-P., & Lin, L.-Y. (2016). Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated medaka: new insights into the salt-secreting mechanism. Scientific Reports, 6.
    Michaelidis, B., Ouzounis, C., Paleras, A., & Pörtner, H. O. (2005). Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series, 293, 109-118.
    Michaelidis, B., Spring, A., & Pörtner, H. O. (2007). Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Marine Biology, 150(6), 1417-1429.
    Miller, G. M., Watson, S.-A., Donelson, J. M., McCormick, M. I., & Munday, P. L. (2012). Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change, 2(12), 858-861.
    Munday, P. L. (2014). Transgenerational acclimation of fishes to climate change and ocean acidification. F1000 Prime Reports, 6(99).
    Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L., & Fabricius, K. E. (2014). Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Climate Change, 4(6), 487-492.
    Munday, P. L., Gagliano, M., Donelson, J. M., Dixson, D. L., & Thorrold, S. R. (2011). Ocean acidification does not affect the early life history development of a tropical marine fish. Marine Ecology Progress Series, 423, 211-221.
    Munday, P. L., McCormick, M. I., & Nilsson, G. E. (2012). Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? Journal of Experimental Biology, 215(22), 3865-3873.
    Murray, C. S., Malvezzi, A., Gobler, C. J., & Baumann, H. (2014). Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series, 504, 1-11.
    Parker, L. M., Ross, P. M., O'connor, W. A., Borysko, L., Raftos, D. A., & Pörtner, H. O. (2012). Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology, 18(1), 82-92.
    Peña, C. J., Monk, C., & Champagne, F. A. (2012). Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PloS one, 7(6), e39791.
    Peterson, T. C., & Baringer, M. (2009). State of the climate in 2008. Bulletin of the American Meteorological Society, 90(8), S1-S196.
    Portner, H., Bock, C., & Reipschlager, A. (2000). Modulation of the cost of pHi regulation during metabolic depression: a (31) P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. Journal of Experimental Biology, 203(16), 2417-2428.
    Putnam, H. M., Davidson, J. M., & Gates, R. D. (2016). Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evolutionary Applications, 9(9), 1165-1178.
    Reipschläger, A., & Pörtner, H.-O. (1996). Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. Journal of Experimental Biology, 199(8), 1801-1807.
    Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., . . . Tilbrook, B. (2004). The oceanic sink for anthropogenic CO2. Science, 305(5682), 367-371.
    Salinas, S., & Munch, S. B. (2012). Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecology letters, 15(2), 159-163.
    Schade, F. M., Clemmesen, C., & Wegner, K. M. (2014). Within-and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteus aculeatus). Marine Biology, 161(7), 1667-1676.
    Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., . . . Masson-Delmotte, V. (2005). Stable carbon cycle–climate relationship during the late Pleistocene. Science, 310(5752), 1313-1317.
    Stumpp, M., Dupont, S., Thorndyke, M., & Melzner, F. (2011). CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 160(3), 320-330.
    Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., . . . Sabine, C. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8), 554-577.
    Tseng, Y.-C., Hu, M. Y., Stumpp, M., Lin, L.-Y., Melzner, F., & Hwang, P.-P. (2013). CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(2), 119-130.
    Zhang, Z., & Hu, J. (2007). Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicological Sciences, 95(2), 356-368.
    Zondervan, I., Zeebe, R. E., Rost, B., & Riebesell, U. (2001). Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochemical Cycles, 15(2), 507-516.

    無法下載圖示 本全文未授權公開
    QR CODE