簡易檢索 / 詳目顯示

研究生: 洪榮裔
Jung-Yi Hung
論文名稱: 植基於雷射人體掃描辨識技術之跌倒偵測系統
The Falling Detect System Based on Human Laser Scanned Recognition Technique
指導教授: 曾煥雯
Tzeng, Huan-Wen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 雷射掃描影像人體高低比例專家系統曲線擬合
英文關鍵詞: laser range image, high-low ratio of human body, expert system, curve fitting
論文種類: 學術論文
相關次數: 點閱:87下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因老人人口比例增加,老人的安養問題漸受各國重視,而研究發現,老人的日常生活中,遭遇到的意外以跌倒居多,而跌倒正是造成老人嚴重傷害的主因之一,因此如何在跌倒事件發生的當下立即發現並處理,便是當前社會的一個重要議題。
    本研究提出一種以雷射掃描影像為基礎的人體跌倒偵測系統。整個系統架構分為建置階段、跌倒偵測階段與辨識階段,以震動型加速度計或是近接型光電感測器輔助系統運作。在人體跌倒姿勢的特徵萃取部份則包含了人體區域分割的演算法,及基於人體上緣包絡線的特徵萃取演算法。本文也提出一個效能的分析指標,以探討本系統的運作效能以及可改進之處。
    藉由本文提出的研究方法、步驟以及流程,並經由實驗驗證,整體系統的辨識率,在辨識跪趴、撐趴、上躺與下躺等姿勢時,辨識率為79.55%;在辨識趴、坐與躺等三個姿勢時,辨識率為83.03%;在辨識站立的姿勢時,其辨識率可達到100%。

    In the times of population aging, the issues of caring the aged are becoming popular. According to foreign research, the most common accident in the daily life of the aged is falling down, which is the main cause of elder’s injury. As the result, how to detect and deal with the falling down event of the aged immediately is a big issue in the current society.
    In this research, we proposed a human falling down gesture detecting system based on laser range image. The whole system is divided into building stages, falling detect stage, and recognition stage. The system use accelerometer and photoelectric sensors to help it run, and use the human body extraction algorithm and the feature extraction algorithm based on the edge line of the human body to extract the falling down gesture feature. Finally, it use the expert system to do the recognition work. In order to determine the efficiency of the system, we propose a performance indicator..
    The approach, steps and flows proposed in this thesis via our experiments prove that the system can successfully recognize kneel-lie, prop-lie, up-lie and down-lie to the rate of 64.39%. When recognizing the lie, sit and lying down gestures, the success rate of the system is 78.79%. And when recognizing the stand gestures, the success rate of the system is 100%.

    謝   誌 i 中文摘要 ii 英文摘要 iii 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究限制 3 1.4 研究方法 3 1.5 研究步驟 4 第二章 文獻探討與回顧 7 2.1 國內外之相關研究 7 2.2 雷射掃描影像 11 2.2.1 雷射測距儀的應用 11 2.2.2 雷射測距儀特性簡介 12 2.2.3 雷射掃描影像 13 2.3 震動型加速度計 14 2.4 專家系統 17 2.4.1 專家系統的發展 18 2.4.2 專家系統架構 18 2.4.3 知識擷取 20 2.4.4 且或樹(AND-OR Tree) 21 2.4.5 知識推理與知識表現 23 2.4.6 專家系統的特色與比較 24 第三章 系統架構分析 25 3.1 系統架構設計 25 3.2 雷射成像之前處理 29 3.2.1 膨脹運算 29 3.2.2 侵蝕運算 32 3.2.3 物件連通 35 3.3 人體雷射掃描影像的擷取 37 3.4 雷射成像修正 39 3.5 人體姿勢特徵擷取 40 3.5.1 人體姿勢分類與命名 41 3.5.2 人體高低比例 42 3.5.3 雷射掃描影像的頭髮資訊 46 3.5.4 人體跌倒姿勢與上緣包絡線 47 3.5.5 卡方考驗 48 3.5.6 標么值的設計 50 3.6 感測器感測判斷 50 3.6.1 使用震動型加速度感測器 51 3.6.2 使用近接型光電感測器 51 3.7 雷射掃描影像結合專家系統判斷跌倒姿勢流程 53 3.8 系統效能分析方式 57 第四章 實驗結果 59 4.1 軟體與硬體環境 59 4.2 跌倒姿勢樣本資料的蒐集 61 4.2.1 基本實驗流程 61 4.2.2 雷射掃描儀器高度的調整 63 4.3 實驗模擬場景 66 4.3.1 模擬場景的設置 67 4.3.2 地面壓力的感測 68 4.3.3 地面障礙物的感測與位置判斷 69 4.4 實驗數據與結果 70 4.5 實驗結果探討 77 第五章 結論與未來研究 81 5.1 結論 81 5.2 後續研究 83 參 考 文 獻 86 附錄一 受測者各姿勢下人體高低比例 90 附錄二 受測者各姿勢下人體頭髮位置 91 附錄三 編號十五的受測者掃描資料 94 作者簡介 102

    [1] 業兆斌,“跌倒的流行病學分析”,中山醫學大學,碩士論文,民國90年。
    [2] A. Sixsmith and N. Johnson, “A Smart Sensor to Detect the Falls of the Elderly”, IEEE Pervasive computing, Vol.3, Issue 2, pp. 42-47, April, 2004.
    [3] 鐘志裕,楊明興,“跌倒仍是老人因傷致死的頭號原因;市府官員和社區合作夥伴詳細介紹防止跌倒計劃”,NYC Health,民國100年。
    [4] T. Hori and Y. Nishida, “Ultrasonic Sensors for the Elderly and Caregivers in a Nursing Home”, Proceedings of 7th International Conference on Enterprise Information Systems, pp. 110-115, May 2005.
    [5] M. Alwan, P. J. Rajendran, S. Kell, D. Mack, S. Dalal, M. Wolfe, and R. Felder, “A Smart and Passive Floor-Vibration Based Fall Detector for Elderly”, 2nd IEEE International Conference on Information and Communication Technologies, Syria, Damasus, April 24-28, 2006.
    [6] K. T. Song and Y. Q. Wang, “Remote Activity Monitoring of the Elderly Using a Two-Axis Accelerometer”, 2005 CACS Automatic Control Conference, Tainan, Taiwan, Nov. 18-19, 2005.
    [7] T. R. Hansen, J. M. Eklund, and J. Sprinkle, “Using Smart Sensors and a Camera Phone to Detect and Verify the Fall of Elderly Persons”, European Medicine, Biology and Engineering Conference, Prague, Czech Republic, Nov. 20-25, 2005.
    [8] C. Doukas, L. Maglogiannis, P. Tragas, D. Liapis, and G. Yovanof, “Patient Fall Detction using Support Vector Machines”, Proceedings of International Federation for Information Processing, pp. 147-156, July, 2007.
    [9] Q. Li, J. A. Stankovic, M. Hanson, A. Barth, and J. Lach, “Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information”, Body Sensor Network 2009, Berkeley, CA, June, 2009.
    [10] M. Lan, A. Nahapetian, A. Vahdatpour, and L. Au, “SmartFall: An Automatic Fall Detection System Based on Subsequence Matching for the SmartCane”, 4th International Conference on Body Area Network (BodyNets), Los Angeles, California, April, 2009.
    [11] C. Rougier, J. Meuiner, A. St-Arnaud, and J. Rousseau, “Procrustes Shape Analysis for Fall Detection”, The 8th International Workshop on Visual Surveillance, Marseille, France, Oct, 2008.
    [12] Chia-Feng Juang and Chia-Ming Chang, “Human Body Posture Classification by a Neural Fuzzy Network and Home Care System Application”, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, vol. 37, no. 6, pp. 984-994, Nov. 2007.
    [13] Z. Fu, E. Culurciello, P. Lichtsteiner, and T. Delbruck, “Fall Detection Using an Address-event Temporal Contrast Vision Sensor”, Proceedings of 2008 IEEE International Symposium on Circuits and Systems (ISCAS 2008), pp. 424-427, May, 2008.
    [14] L. Zhange and B. K. Ghosh, “Geometric Feature based 21/2D Map Building and Planning With Laser, Sonar and Tactile Sensors”, IEEE Conference on Intelligent Robots and Systems, pp. 115-120, 2000.
    [15] H. Stern, “Laser Based 3-D Surface Mapping for Manufacturing Diagnostics and Reverse Engineering”, IEEE Conferences on Aerospace and Electronics, pp. 1205-1212, 1992.
    [16] M. A. Mayyas, “Application of Thin Plate Splines for Surface Reverse Engineering and Compensation for Femtosecond Laser Micromaching”, IEEE Conferences on Intelligent Control, pp. 125-130, 2005.
    [17] S. M. Varghese and M. J. Isakson, “The Calibration of a Laser Light Line Scan Method for Determining Local Interface Roughness of the Ocean Floor”, IEEE Journal on Oceanic Engineering, pp. 463-467, 2005.
    [18] M. Liu, Y. Bai, Q. Li, Z. Liu and Q. Lin, “Three-dimensional Reverse Engineering Modeling and Numerical Simulation of Pump Based on Laser Scanning Technology”, IEEE Conferences on E-Product E-Service and E-Entertainment, pp. 1-4, 2010.
    [19] K. Nishimoto, A. Sagami and K. Kaneyama, “Three Dimensional Recognition of Environments for a Mobile Robot Using Laser Range Finder”, SICE Annual Conference, pp. 401-405, Sep, 2007.
    [20] B. Sert, J. Maddox and P. Veatch, “Laser Assisted Intelligent Guidance for Automated Guided Vehicles”, IEEE Conferences on Intelligent Vehicles, pp. 201-206, 1993.
    [21] D. Skocaj and A. Leonardis, “Robust Recognition and Pose Determination of 3-D Objects Using Range Images in Eigenspace Approach”, 2001 Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 171-178, May, 2001.
    [22] T. Ikeda, Y. Chigodo, T. Miyashita, F. Kishino and N. Hagita, “A Method to Recognize 3D Shapes of Moving Targets based on Integration of Inclined 2D Range Scans”, 2011 IEEE International Conference on Robotics and Automation, pp. 3575-3580, May, 2011.
    [23] G. W. Hamilton and A. L. Fowler, “The Laser Rangefinder”, IET Journal on Electronic and Power, pp. 318-322, 1966.
    [24] 江孟峰,專家系統導論工具應用,文魁,2002年11月。
    [25] 許覺良,專家系統,文魁,民國78年。
    [26] 張家豪,“智慧型電機接線實驗監控介面設計”國立台灣師範大學工業教育學系,碩士論文,民國92年。
    [27] M. Dodridge, “Learning Outcomes and Their Assessment in Higher Education,” Engineering Science and Education Journal, vol. 8, no. 4, pp. 161-168, Aug. 1999.
    [28] 張紹勳,人工智慧與專家系統,松崗,民國82年8月。
    [29] 吳怡明,“手勢辨識應用於搖控音樂播放系統”,國立台灣科技大學電機工程系,碩士論文,民國98年。
    [30] 陳佳鈺,“結合地板壓力與紅外線影像之跌倒偵測系統”,國立台灣師範大學應用電子科技學系,碩士論文,民國96年。

    下載圖示
    QR CODE