研究生: |
黃鉦翔 Chen-Hsiang Huang |
---|---|
論文名稱: |
以amyloid-β 聚集為目標的阿茲海默氏症治療策略 Therapeutic strategies targeting amyloid-β aggregation for Alzheimer's disease |
指導教授: |
李桂楨
Lee, Guey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 阿茲海默氏症 、老年癡呆症 、澱粉樣蛋白斑 、β-結構 、澱粉樣蛋白42 |
英文關鍵詞: | Alzheimer's disease, dementia, amyloid plaques, cross-β-structure, Aβ42 |
論文種類: | 學術論文 |
相關次數: | 點閱:691 下載:47 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿茲海默氏症是最常見的老年癡呆症,主要臨床症狀包括Aβ胜肽聚集而成的細胞外澱粉樣蛋白斑與tau蛋白形成的細胞內神經纖維糾結。Aβ胜肽與tau蛋白的聚集往往是基於β-結構互相堆疊而形成。由於藉由破壞蛋白之間的氫鍵可能抑制蛋白聚集,故可能可以從吲哚、多酚類及其衍生物和中藥材篩選出潛在的Aβ胜肽聚集抑制劑。為了達成以上目的,本實驗利用thioflavin T分析法篩選人工合成之化合物。此外,於細胞層面上將Aβ42胜肽與GFP螢光蛋白的N端融合,用於反映Aβ42聚集之程度,並建立於SH-SY5Y細胞和293細胞中,篩選出Tet-On SH-SY5Y細胞與Tet-On 293細胞。Tet-On 293細胞被用來測試植物萃取物與天然或人工合成化合物,藉由綠色螢光訊號區別可延緩或抑制Aβ42聚集之抑制劑。本實驗使用Tet-On 293阿茲海默氏症細胞模式於高通量分析系統,並結合自動顯微鏡與圖像分析自動測試化合物的有效濃度。本實驗分析出10種植物萃取物與人工合成化合物,能提升Aβ42-GFP綠螢光之訊號,其中NTNU-043、NTNU-057、NTNU-059、NTNU-071、NC009-1以及NC009-2等較具潛力,能增加Hsp27蛋白表現,幫助抑制Aβ42聚集。
Alzheimer's disease is the most common form of dementia that is pathologically characterized by the presence of extracellular amyloid plaques formed from Aβ peptide and intracellular neurofibrillary tangles formed from tau protein. Aggregation is often based on the formation of cross-β-structure and may be inhibited by disrupting the hydrogen bonds between sheets. Thus screening for indole, polyphenol derivatives and herbal medicines might find out potential inhibitors of Aβ peptide aggregation. To do this, thioflavin T assay was used to screen the synthetic compounds. Also, Aβ42 was fused to the N-terminus of GFP to couple the aggregation state with the fluorescence of GFP and used to generate Tet-On SH-SY5Y cell and 293 cell clones. Tet-On 293 cells were used to screen herbal extracts and natural or synthetic compounds. Inhibitors that retard or block Aβ42 aggregation can be distinguished by the increasing green fluorescent signal. The effective concentration of the tested herbs and compounds will be determined by using a high content analysis system that combines automated microscopy and automated image analysis in 293 AD model. In this study, 10 herbal extracts and synthetic compounds which could significantly increase green fluorescent signal were identified. Among the 10 compounds examined, NTNU-043, NTNU-057, NTNU-059, NTNU-071, NC009-1 and NC009-2 effectively increased green fluorescent signal and enhanced Hsp27 expression.
Abdenour B, Doggui S, Dao L, Ramassamy C (2011) Challenges associated with curcumin therapy in Alzheimer’s disease. Expert Rev Mol Med 13: 1-15.
About Alzheimer's Disease: Symptoms. (2012) National Institute on Aging. http://www.nia.nih.gov/alzheimers/topics/symptoms.
Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 94: 298-303.
Alzheimer A (1907) On a peculiar disease of the cerebral cortex. Allgemeine Zeitschrift fur Psychiatrie und Psychish-Gerichtlich Medicin 64: 146-148.
Roy A, Saraf S (2006) Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol Pharm Bull 29: 191-201.
Bertram L, Tanzi RE (2008) Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat rev Neurosci 9: 768-778.
Boyé-Harnasch M, Cullin C (2006) A novel in vitro filter trap assay identifies tannic acid as an amyloid aggregation inducer for HET-s. J Biotechnol 125: 222-230.
Changa E, Kure J (2008) Detection and quantification of tau aggregation using a membrane filter assay. Anal Biochem 373: 330-336.
Chiu PY, Ko KM (2004) Schisandrin B protects myocardial ischemia-reperfusion injury partly by inducing Hsp25 and Hsp70 expression in rats. Mol Cell Biochem 266: 139-144.
Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313: 1604-1610.
Cohen T, Frydman-Marom A, Rechter M, Gazit E (2006) Inhibition of amyloid fibril formation and cytotoxicity by hydroxyindole derivatives. Biochemistry 45: 4727-4735.
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261: 921-923.
Cubitt A, Heim R, Adams S, Boyd A, Gross L, Tsien R (1995) Understanding improving and using green fluorescent proteins. Trends Biochem Sci 20: 448-455.
Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56: 321-339.
Evans CG, Wisen S and Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 281: 33182-33191.
Falah S, Suzuki T, Katayama T (2008) Chemical constituents from Swietenia macrophylla bark and their antioxidant activity. Pak J Biol Sci 11: 2007-2012.
Fandrich M (2007) On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci 64: 2066-2078.
Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22: 993-1005.
Frid P, Anisimov SV, Popovi, N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53: 135-160.
Funato H, Yoshimura M, Kusui K, Tamaoka A, Ishikawa K, Ohkoshi N, Namekata K, Okeda R, Ihara Y (1998) Quantitation of amyloid β-protein in the cortex during aging and in Alzheimer's disease. Am J Pathol 152: 1633-1640.
Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349: 704-706.
Grönwall C, Jonsson A, Lindström S, Gunneriusson E, Ståhl S, Herne N (2007) Selection and characterization of Affibody ligands binding to Alzheimer amyloid beta peptides. J Biotechnol 128: 162-183.
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913-4917.
Janreddy D, Kavala V, Bosco JWJ, Kuo CW, Yao CF (2011) An easy access to carbazolones and 2,3-Disubstituted indoles. Eur J Org Chem 2011: 2360-2365.
Kawasaki T, Kamijo S (2012) Inhibition of aggregation of amyloid β42 by arginine-containing small compounds. Biosci Biotechnol Biochem 76: 762-766.
Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486-489.
Kim W, Kim Y, Min J, Kim DJ, Chang YT, Hecht MH (2006) A high throughput screen for compounds that inhibit aggregation of the Alzheimer’s peptide. ACS Chemical Biology 1: 461-469.
Lazo ND, Maji SK, Fradinger EA, Bitan G, Teplow DB (2005) In: J. Sipe (Ed.), Amyloid Proteins: the Beta-Sheet Conformation and Disease. Wiley-VCH 2: 385-491.
Lee S, Carson K, Rice-Ficht A, Good T (2006) Small heat shock proteins differentially affect Abeta aggregation and toxicity. Biochem Biophys Res Commun 347: 527-533.
Lendel C, Bolognesi B, Wahlstrom A, Dobson CM, Graslund A (2010) Detergent-like interaction of Congo red with the amyloid beta peptide. Biochemistry 49: 1358-1360.
Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu YH, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269: 973-977.
Liu JQ, Wang CF, Chen JC, Qiu MH (2012) Limonoids from the leaves of Swietenia macrophylla. Nat Prod Res 26: 1887-1891.
Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91: 12243-12247.
Malgorzata K, Eloisa G, Lewiñski A, Russel J (2001) Reiter Relative efficacies of indole antioxidants in reducing autoxidation and iron-induced lipid peroxidation in hamster testes. Journal of cellular biochemistry 81: 693-699.
Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, Cruz-Sanchez F, Chyan YJ, Smith MA, Perry G, Shoji M, Abe K, Leone A, Chain DG, Neria E, Grundke-Ikbal I, Wilson GL, Ghiso J, Williams C, Refolo LM, Pappolla MA (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 85: 1101-1108.
Migliore L, Coppede F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 667: 82-97.
Ono K, Hasegawa K, Naiki H, Yamada M (2004a) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75: 742-750.
Ono K, Hasegawa K, Naiki H, Yamada M (2004b) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer's beta-amyloid fibrils in vitro. Biochim Biophys Acta 1690: 193-202.
Pan MH, Lin-Shiau SY, Lin JK (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60: 1665-1676.
Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman R, Delaglio F, Tycko R (2002) A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99: 16742-16747.
Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67: 27-37.
Rane MJ, Pan Y, Singh S, Powell DW, Cummins T, Wu R, Chen Q, McLeish KR, Klein JB (2003) Heat shock protein 27 controls neutrophil survival by regulating PKB/Akt activation. J Biol Chem 278: 27828-27835.
Rangachari V, Moore BD, Reed DK, Sonoda LK, Bridges AW, Conboy E, Hartigan D, Rosenberry TL (2007) Amyloid-β(1-42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate. Biochemistry 46: 12451-12462.
Ray B, Lahiri DK (2009) Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 9: 434-444.
Reddy AC, Lokesh BR (1992) Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol Cell Biochem 111: 117-124.
Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball MJ (1993) β-Amyloid (1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci USA 90: 10836-10840.
Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annu Rev Med 47: 387-400.
Sakono M and Zako T (2010) Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS Journal 277: 1348-1358.
Sato T, Kienlen-Campard P, Ahmed M, Liu W, Li H, Elliott JI, Aimoto S, Constantinescu SN, Octave JN, Smith SO (2006) Inhibitors of amyloid toxicity based on beta-sheet packing of Abeta40 and Abeta42. Biochemistry 45: 5503-5516.
Schepers H, Geugien M, van der TM, Bryantsev AL, Kampinga HH, Eggen BJ, Vellenga E (2005) HSP27 protects AML cells against VP-16-induced apoptosis through modulation of p38 and c-JunExp. Hematol 33: 660-670.
Selkoe DJ (1991) The molecular pathology of Alzheimer's disease. Neuron 6: 487-498.
Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81: 741-766.
Shimura H, Miura-Shimura Y, Kosik KS (2004) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 279: 17957-17962.
Simmonds MS (2003) Novel drugs from botanical sources. Drug Discov Today 8: 721-722.
Sreejayan, Rao MN (1994) Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46: 1013-1016.
Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273: 729-739.
Tabert MH, Liu X, Doty RL, Serby M, Zamora D, Pelton GH, Marder K, Albers MW, Stern Y, Devanand DP (2005) A 10-item smell identification scale related to risk for Alzheimer's disease. Ann Neurol 58: 155-160.
Taddei K, Fisher C, Laws SM, Martins G, Paton A, Clarnette RM, Chung C, Brooks WS, Hallmayer J, Miklossy J, Relkin N, St George-Hyslop PH, Gandy SE, Martins RN (2002) Association between presenilin-1 Glu318Gly mutation and familial Alzheimer's disease in the Australian population. Mol Psychiatry 7: 776-781.
Waldemar G, Dubois B, Emre M, Georges J, McKeith IG, Rossor M, Scheltens P, Tariska P, Winblad B (2007) Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: EFNS guideline. Eur J Neurol 14: e1-26.
Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Rapid protein-folding assay using green fluorescent protein. Nature Biotechnol 17: 691-695.
Wilhelmus MM, Boelens WC, Otte-Höller I, Kamps B, de Waal RM, Verbeek MM (2006) Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089: 67-78.
Wisniewski HM, Vorbrodt AW, Wegiel J (1997) Amyloid angiopathy and blood-brain barrier changes in Alzheimer's disease. Ann NY Acad Sci 826: 161-172.
Wong HE, Kwon I (2011) Xanthene food dye, as a modulator of Alzheimer's disease amyloid-beta peptide aggregation and the associated impaired neuronal cell function. PLoS ONE 6: e25752.
Wurth C, Guimard NK, Hecht MH (2002) Mutations that reduce aggregation of the Alzheimer's Abeta42 peptide: an unbiased search for the sequence determinants of Abeta amyloidogenesis. J Mol Biol 319: 1279-1290.
Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280: 5892-5901.
Yoshiike Y, Minai R, Matsuo Y, Chen YR, Kimura T, Takashima A (2008) Amyloid oligomer conformation in a group of natively folded proteins. PLoS ONE 3: e3235.