簡易檢索 / 詳目顯示

研究生: 楊懿珊
Yang, Yi-Shan
論文名稱: 以3分鐘划船衰竭測驗判定臨界負荷
Determination of Critical Power by Using the 3-min All-out Rowing Test
指導教授: 鄭景峰
Cheng, Ching-Feng
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 70
中文關鍵詞: 結束功率高於結束功率之總作功室內划船
英文關鍵詞: end-test power, work done above the EP, indoor rowing
論文種類: 學術論文
相關次數: 點閱:228下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:評估3分鐘划船衰竭測驗 (3-min RT) 之再測信度,並發展新的划船臨界負荷 (critical power, CP) 評估方法。方法:18名自願參與本研究之男子划船選手(年齡為17.72 ± 1.87歲,身高為178.00 ± 4.28公分,體重為70.69 ± 4.97公斤)。所有受試者須進行2,000公尺室內划船測驗,並分別透過3-min RT及划船漸增負荷測驗判定攝氧峰值 (VO2peak) 及最大攝氧量 (VO2max) 。而在CP測驗中,則以作功-時間 (work-time, W-t) 及功率-時間倒數 (power-1/time, P-t-1) 之模式判定CP及無氧作功能力 (anaerobic work capacity, W') 。此外,透過3-min RT判定結束功率 (end-test power, EP) 及高於結束功率之總作功 (work done above the EP, WEP) ,且3-min RT須進行2次以評估再測信度。以上測驗皆須間隔48小時以上。結果:組內相關係數分析顯示3-min RT具良好再測信度 (ICC = .62 ~ .97, p < .05) 。EP (269.22 ± 39.20 W) 與W-t模式 (271.99 ± 29.82 W) 及P-t-1 (275.71 ± 31.60 W) 之CP值,皆達顯著相關(r = .75與 .80, p < .05),且EP與兩模式之CP皆無顯著差異。然而,WEP (16.63 ± 4.03 kJ) 與兩模式之W' (W-t, 13.23 ± 2.99 kJ; P-t-1, 12.33 ± 3.23 kJ) 並無顯著相關。VO2peak及VO2max具顯著相關性 (r = .66, p < .05) 。結論:3分鐘划船衰竭測驗具良好信效度,且可有效評估男子划船選手有氧能力,特別是CP及VO2max等指標。

    Purpose: To assess the reproducibility of the 3-min all-out end test using on the rowing exercise (3-min RT), and to develop a new method to measure the critical power (CP) on rowing. Methods: Eighteen male rowers (age, 17.72 ± 1.87 years; height, 178.00 ± 4.28 cm; weight, 70.69 ± 4.97 kg) volunteered to participate in this study. All subjects were asked to perform the 2,000 meter indoor rowing test. The peak (VO2peak) and maximal (VO2max) oxygen consumption were respectively determined by the 3-min RT and incremental rowing exercise test. During the CP tests, the values of the CP and anaerobic work capacity (W') were calculated by work-time (W-t) and power-1/time (P-t-1) models. The end-test power (EP) and work done above the EP (WEP) were also calculated during the 3-min RT. Each subject was required to perform 2 times of the 3-min RT test for evaluating the test-retest reliability. All tests were sperated by at least 48 hours. Results: The results of ICC (intraclass correlation coefficient) indicated that the 3-min RT has good test-retest reliability (ICC = .62 ~ .97, p < .05) . The EP (269.22 ± 39.20 W) was significantly correlated to the CP which were calculated by W-t (271.99 ± 29.82 W) and P-t-1 (275.71 ± 31.60 W) models (r = .75 and .80, p < .05) , and it was not significantly different from the CP calculated by these two models. However, the WEP (16.63 ± 4.03 kJ) was not significantly correlated to the W' (W-t, 13.23 ± 2.99 kJ; P-t-1, 12.33 ± 3.23 kJ), and it was significant different from the W' calculated by these two models. There was significant correlation between the VO2peak and VO2max (r = .66, p < .05). Conclusion: The 3-min RT has good reliability, and can validly assess the aerobic capacity in male rowers, especially the CP and VO2max.

    中文摘要 i 英文摘要 ii 謝 誌 iii 目 次 iv 表 次 vi 圖 次 vii 第壹章 緒論 1 第一節 前言 1 第二節 研究重要性 4 第三節 研究目的 5 第四節 研究假設 6 第五節 研究範圍與限制 6 第六節 名詞操作性定義 7 第貳章 文獻探討 11 第一節 臨界負荷相關文獻探討 11 第二節 有氧及無氧能力與划船運動表現相關性探討 24 第三節 本章總結 29 第參章 研究方法 30 第一節 受試對象 30 第二節 實驗日期 30 第三節 實驗地點 30 第四節 研究工具 31 第五節 實驗方法與步驟 31 第六節 測驗程序與流程 36 第七節 前導實驗結果 37 第八節 資料處理與統計分析 40 第肆章 結果 41 第一節 3分鐘划船衰竭測驗之再測信度 41 第二節 3分鐘划船衰竭測驗與臨界負荷測驗之相關性 42 第三節 3分鐘划船衰竭測驗與划船漸增負荷測驗之相關性 47 第四節 2,000公尺室內划船表現之預測性 50 第伍章 討論 53 第一節 3分鐘划船衰竭測驗再測信度 53 第二節 3分鐘划船衰竭測驗與臨界負荷測驗之相關性 53 第三節 以衰竭測驗判定最大攝氧量 56 第四節 2,000公尺室內划船表現之預測性 57 第陸章 結論與建議 60 參考文獻 61 一、中文部分 61 二、外文部分 61 附錄 65 附錄一 受試者須知 65 附錄二 健康情況調查表 66 附錄三 受試者自願同意書 68 附錄四 受試者基本資料與實驗紀錄表 69

    王順正、王鶴森、林正常(1995)。漸增強度運動測驗之臨界負荷與無氧閾值的關係研究。體育學報,19,145-156。

    王順正、李昭慶、康風都(1994)。臨界負荷在運動強度設定上的應用。中華體育,28,116-125。

    王順正、林正常(1992)。臨界負荷、肌電圖疲勞閾值與無氧閾值的關係研究。體育學報,14,207-226。

    林信甫(2005)。划船選手臨界負荷無氧動力及能量消耗指標與運動表現之相關研究。未出版博士論文,國立臺灣師範大學,臺北市。

    鄭景峰、林惠美、李佳倫、林正常(2008)。以生理變項預估2,000公尺室內西式划船運動表現。大專體育學刊,10 (3),137-149。

    Barfielda, J. P., Shermanb, T. E., & Michaelc, T. J. (2003). Response similarities between cycle and rowing ergometry. Physical Therapy in Sport, 4, 82–86.

    Beneke, R., Leithäuser, R. M., & Hütler, M. (2001). Dependence of the maximal lactate steady state on the motor pattern of exercise. British Journal of Sports Medicine, 35(3), 192-196.

    Billat, V., & Lopes, P. (2006). Indirect methods for estimation of aerobic power. In P. J. Maud & C. Foster (Eds), Physiological assessment of human fitness. Champaign, IL: Human Kinetics.

    Brickley, G., Dekerle, J., Hammond, A. J., Pringle, J., & Carter, H. (2007). Assessment of maximal aerobic power and critical power in a single 90-s isokinetic all-out cycling test. International Journal of Sports and Medicine, 28(5), 414-419.

    Burnley, M., Doust, J. H., & Vanhatalo, A. (2006). A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Medicine and Science in Sports and Exercise, 38(11), 1995-2003.

    Clingeleffer, A., McNaughton, L., & Davoren, B. (1994). Critical power may be determined from two tests in elite kayakers. European Applied Journal of Physiology, 68, 36-40.

    Cosgrove, M. J., Wilson, J., Watt, D., & Grant, S. F. (1999). The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. Journal of Sports Sciences, 17 (11), 845-852.

    Dekerle, J., Vanhatalo, A., & Burnley, M. (2008). Determination of critical power from a single test. Science and Sports, 23, 231-238.

    Hill, D. W. (1993). The critical power concept. A review. Sports Medicine, 16, 237-256.

    Housh, D. J., Housh, T. J., & Bauge, S. M. (1990). A methodological consideration for the determination of critical power and anaerobic work capacity. Research Quarterly for Exercise and Sport, 61(4), 406-409.

    Hughson, R. L., Orok, C. J., & Staudt, L. E. (1984). A high velocity treadmill running test to assess endurance running potential [Abstract] . International Journal of Sports Medicine, 5(1), 23-25.

    Ingham, S. A., Whyte, G. P., Jones, K., & Nevill, A. M. (2002). Determinants of 2,000 m rowing ergometer performance in elite rowers. European Journal of Applied Physiology, 88(3), 243-246.

    Kennedy, M. D., & Bell, G. J. (2000). A comparison of critical velocity estimates to actual velocity in predicting simulated rowing performance. Canadian Journal of Applied Physiology, 25(4), 223-235.

    Mäestu, J., Jürimäe, J., & Jürimäe, T. (2005). Monitoring of performance and training inrowing. Sports Medicine, 35(7), 597-617.

    Manabu, S., & Yasuo, K. (2005). Critical power determination with ergometry rowing: Relation to rowing performance. International Journal of Sport and Health Science, 3, 21-26.

    Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular group [Abstract] . Ergonomics, 8, 329-338.

    Moritani, T., Nagata, A., deVries, H. A., & Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold [Abstract] . Ergonomics, 24(5), 339-350.

    Morton, R.H. (1994). Critical power test for ramp exercise. European Journal of Applied Physiology, 69, 435-438.

    Nebelsick-Gullett, L. J., Housh, T. J., Johnson, G. O., & Bauge, S. M. (1988). A comparison between methods of measuring anaerobic work capacity. Ergonomics. 31(10), 413-419.

    Pripstein, L. P., Rhodes, E. C., McKenzie, D.C., & Coutts, K. D. (1999). Aerobic and anaerobic energy during a 2-km race simulation in female rowers. European Journal of Applied Physiology and Occupational Physiology, 79(6), 491-494.

    Riechman, S. E., Zoeller, R. F., Balasekaran, G., Goss, F. L., & Robertson, R. J. (2002). Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. Journal of Sports Sciences, 20(9), 681-687.

    Russell, A. P., Le Rossignol, P. F., & Sparrow, W. A. (1998). Prediction of elite schoolboy 2000m rowing ergometer performance from metabolic, anthropometric and strength variables. Journal of Sports Sciences, 16(8), 749-754.

    Smith, J. C., Dangelmaier, B. S., & Hill, D. W. (1999). Critical power is related to cycling time trial performance. International Journal of Sports and Medicine, 20(6), 374-378.

    Vanhatalo, A., Doust, J. H., & Burnley, M. (2007). Determination of critical power using a 3-min all-out cycling test. Medicine and Science in Sports and Exercise, 39(3), 548-555.

    Wakayoshi, K., Ikuta, L., Yoshida, T., Udo, M., Moritani, T., Mutoh, Y., & Miyashita, M. (1992). Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. European Journal of Applied Physiology, 64(2), 153-157.

    Withers, R. T., Vander P. G., & Finn, J. P. (1993). Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an air-braked ergometer. European Journal of Applied Physiology and Occupational Physiology. 67(2), 185-191.

    Yoshiga, C. C., & Higuchi, M. (2003). Rowing performance of female and male rowers. Scandinavian Journal of Medicine and Science in Sports, 13, 317-321.

    下載圖示
    QR CODE