簡易檢索 / 詳目顯示

研究生: 林庭卉
Lin, Ting-Hui
論文名稱: 影響科技校院使用線上教學進行實作導向課程之學習動機因素研究
A Study of the Factors Affecting the Learning Motivation of Online Learning for Practice-oriented courses in Technology University
指導教授: 廖信
Liao, Shin
口試委員: 韓豐年
Han, Feng-Nian
林展立
Lin, Chan-Li
廖信
Liao, Shin
口試日期: 2022/07/26
學位類別: 碩士
Master
系所名稱: 圖文傳播學系
Department of Graphic Arts and Communications
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 93
中文關鍵詞: 科技校院線上教學實作導向課程學習動機ARCS動機模型
英文關鍵詞: Technology Universities, Online Learning, Practice-oriented Courses, Learning Motivation, The ARCS Motivation Theory
研究方法: 調查研究
DOI URL: http://doi.org/10.6345/NTNU202200924
論文種類: 學術論文
相關次數: 點閱:194下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應全球疫情的發展,線上教學(online learning)成為維持社會學習量能的最重要方法。然而面對線上教學,仍有許多值得探究的元素。而在過去針對線上教學與學習動機(learning motivation)之研究不在少數,然本研究旨在探討科技校院(technology university)學生使用線上教學進行實作導向課程(practice-oriented course)時,影響其學習動機之因素。透過設計教學活動並透過文獻探討改編設計之「線上教學之學習動機調查問卷」進行學習動機調查,共計34份研究對象之資料回收,為高雄市某科技大學設計相關科系之學生。最終所得結論歸納於下:
    一、線上教學在臺灣已進入逐漸成熟的階段。從相關政策到如今推動各級學校將線上教學融合於教學中,而本研究也藉由實施教學活動的方式發現科技校院中的線上教學也因為疫情影響有更多利用,且透過問卷回應資料,得出學生學習動機為3.566分,屬中上數值,可見線上教學可能成為未來教學的常態模式。
    二、本研究認為影響科技校院使用線上教學的因素不在少數,根據文獻探討及實地教學活動整理出以下幾點:(1)學習者個人動機、(2)課程設計、(3)教材使用、(4)學習成效考量、(5)教學互動性、(6)線上教學使用熟悉程度、(7)裝置使用技術以及(8)教師等。
    三、本研究整理影響線上教學學習動機的因素有:(1)內在價值、(2)外在價值、(3)任務價值、(4)期望成功、(5)自我效能、(6)認知導向、(7)情感導向。由上述因素學習者更能評估課程對於自身之價值,以及自身對己的期待能夠在當中學習到多少,最後考量對於課程的興趣程度,方能綜合評估學習者使用線上教學之學習動機。

    In response to the global epidemic, online learning has become the most important way to maintain the learning capacity of the community. However, there are still many elements to be explored in the face of online learning. While there are many studies on online learning and learning motivation in the past, this study aims to investigate the factors that affect the learning motivation of technology universities students when they use online learning to conduct practiced-orientated courses. A total of 34 data were collected from students of a design-related department at one of the university of technology of Kaohsiung, through the design of teaching activities and the adaptation of the "Online Learning Motivation Survey". The final conclusions are summarized as follows.
    1. Online learning has entered a stage of gradual maturity in Taiwan. From relevant policies to the promotion of schools at all levels to integrate online learning into teaching, this study also found that online learning in technology university is also more utilized due to the impact of the epidemic by implementing teaching activities, and responded to the data through questionnaires, it is concluded that the students' learning motivation is 3.566 points, which is a middle-to-upper value. It can be seen that online learning may become the normal mode of future teaching.
    2. This study believes that there are many factors that affect the use of online learning in science and technology schools. Based on literature research and field teaching activities, the following points are sorted out: (1) learner’s personal motivation, (2) curriculum design, (3) use of teaching materials, (4) Consideration of learning effectiveness, (5) Teaching interactivity, (6) Familiarity with the use of online learning, (7) Device use technology, and (8) Teachers.
    3. In this study, the factors that affect learning motivation in online learning are: (1) intrinsic value, (2) extrinsic value, (3) task value, (4) expected success, (5) self-efficacy, (6) cognitive orientation, (7) Emotional orientation. Based on the above factors, learners can better evaluate the value of the course for themselves, and how much they can expect to learn from it, and finally consider the level of interest in the course, in order to comprehensively evaluate the learner's motivation to use online learning.

    摘要 i Abstract ii 表次 vi 圖次 vii 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 4 第三節 研究範圍與限制 5 第四節 名詞解釋 6 第貳章 文獻探討 8 第一節 線上教學 8 第二節 線上教學之影響因素 14 第三節 ARCS動機模型 18 第四節 學習動機 22 第參章 研究設計 25 第一節 研究架構 25 第二節 研究流程 26 第三節 研究方法 28 第四節 研究對象 30 第五節 研究工具 31 第六節 資料處理與分析 41 第肆章 研究結果與討論 42 第一節 教學活動實施成果 42 第二節 學習動機量表資料分析與討論 46 第伍章 結論與建議 53 第一節 結論 53 第二節 建議 55 參考文獻 57 附錄一 電腦影像處理課綱 67 附錄二 電腦影像處理教學活動設計教案 73 附錄三 線上教學之學習動機調查問卷 92

    王汎森(2002)。數位教育與網路學習計畫。 數位典藏與數位學習國家型科技計畫。2021年3月4日,取自:http://www.teldap.tw/Introduction/introduction_2_6.html
    王智瑩、林志哲(2021)。心智圖融入會計學課程對技術型高中學生學習動機及學習成效之影響。臺北市立大學學報教育類,52(1),75-96。 doi: 10.6336/JUTEE.202106_52(1).0004
    史美瑤(2014)。混成學習的挑戰與設計。評鑑雙月刊,50,34-36。
    行政院(2002)。挑戰 2008:國家發展重點計畫。2021年年10月5日,取自:http://ws.moe.edu.tw/001/Upload/userfiles/guideline(9101).pdf
    吳怡如、翁楊絲茜、葉怡宣、陳姿佑(2012)。學習風格對混成學習參與度與成效之研究-以公務人員為例。技職教育期刊,6,61-76。doi: 10.6765/JTVE.201212.0061
    吳昭容、劉子鍵(2012)。 實驗法在數位學習研究的應用。載於宋曜廷(主編), 數位學習研究方法。p.44-72。臺北市:高等教育。
    吳美美(2004)。數位學習現在與未來發展。圖書館學與資訊科學,30(2),92-106。
    宋曜廷(2012)。數位學習研究方法(一版)。臺北市:高等教育。
    張玉山、簡爾君(2016)。透過ARCS理論提高學習動機的STEM教學設計─生活科技的平衡鳥單元。科學研習,55(4)。32-41。
    教育部(2021)。數位學習深耕計畫。2021年年10月5日,取自:https://tweloe.org/

    教育部國民及學前教育署(2019)。高級中等學校課程實務工作手冊。2021年11月23日,取自:https://sites.google.com/gapp.ylsh.ilc.edu.tw/manual/%E9%A6%96%E9%A0%81
    教育部國民及學前教育署(2021)。高級中等以下學校因應疫情線上教學採彈性多元方式。2021年年5月26日,取自:https://cpd.moe.gov.tw/page_two.php?id=34840
    教育部資訊及科技教育司(2017)。教育部中小學數位學習深耕推動計畫。2021年9月2日,取自:https://dlearning.ncku.edu.tw/plan/target
    莊貴枝、林義棟、劉邦棟、陳進冬(2015)。從師培職前教育之資電專業領域在「五堂課:有效教學」之對話。臺灣教育評論月刊,4(4),26-34。
    郭伯臣(2020)。校園防疫與中小學數位學習之現況與未來。國土及公共治理季刊,8(4),72-79。
    廖信、楊肇傅、林庭卉(2022)。全球COVID-19疫情下臺灣科技校院學生線上學習動機與學習成效之相關性探討。工教70回顧與前瞻國際研討,臺北市,臺灣。
    衛生福利部疾病管制署(2021)。因應本土疫情持續嚴峻,指揮中心自即日起至5月28日止提升全國疫情警戒至第三級。2021年年5月26日,取自:https://www.cdc.gov.tw/Category/ListContent/EmXemht4IT-IRAPrAnyG9A?uaid=abDtRS-xzztQeAchjX9fqw
    蕭佳純(2017)。學生學習動機與學業成就關聯之研究:教師創意教學的多層次調節式中介效果。特殊教育研究學刊,42(1),79-111。 doi: 10.6172/BSE.2017.03.4201004
    賴志忠、段曉林(2020)。以ARCS動機模式融入引導式探究教學提升九年級生學習動機之行動研究。科學教育學刊,28(1),25-48。 doi: 10.6173/CJSE.202003_28(1).0002
    羅家駿、孫秀綺(2015)。應用混成式學習於國小品格教育之實證研究。資訊科技與應用期刊,9(1),8-17。doi: 10.6302/JITA.201503_9(1).0002
    Agarwal, S. & Kaushik, J. S. (2020). Student’s Perception of Online Learning during COVID Pandemic. Indian Journal of Pediatrics, 87(7), 554. https://doi.org/10.1007/s12098-020-03327-7
    Alhazbi, S. & Hasan, M. A.(2021). The role of self-regulation in remote emergency learning: Comparing synchronous and asynchronous online learning. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131911070
    Asiksoy, G. & Özdamli, F.(2016). Flipped classroom adapted to the ARCS model of motivation and applied to a physics course. Eurasia Journal of Mathematics, Science and Technology Education, 12(6), 1589-1603. https://doi.org/10.12973/eurasia.2016.1251a
    Bandura, A.(1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Processes, 50(2), 248-287. https://doi.org/10.1016/0749-5978(91)90022-L
    Bates, T.(2014). A short history of educational technology. Online Learning and Distance Education Resources.
    Bond, M.(2020). Facilitating student engagement through the flipped learning approach in K-12: A systematic review. Computers & Education, 151, 103819. https://doi.org/10.1016/j.compedu.2020.103819
    Castaño Muñoz, J., Redecker, C., Vuorikari, R. & Punie, Y.(2013). Open Education 2030: Planning the future of adult learning in Europe. Open Learning, 28(3), 171-186. https://doi.org/10.1080/02680513.2013.871199
    Chandrasinghe, P. C., Siriwardana, R. C., Kumarage, S. K., Munasinghe, B. N. L.,
    Weerasuriya, A. & Tillakaratne, S. (2020). A novel structure for online surgical undergraduate teaching during the COVID-19 pandemic. BMC Medical Education, 20(1), 324. https://doi.org/10.1186/s12909-020-02236-9
    Chen, C.-M., Chen, L.-C. & Yang, S.-M.(2019). An English vocabulary learning app with self-regulated learning mechanism to improve learning performance and motivation. Computer Assisted Language Learning, 32(3), 237-260. https://doi.org/10.1080/09588221.2018.1485708
    Chaker, R., Bouchet, F., & Bachelet, R. (2022). How do online learning intentions lead to learning outcomes? The mediating effect of the autotelic dimension of flow in a MOOC. Computers in Human Behavior, 134, 107306. https://doi.org/10.1016/j.chb.2022.107306
    Czerkawski, B. C. & Lyman, E. W.(2016). An Instructional Design Framework for Fostering Student Engagement in Online Learning Environments. TechTrends, 60(6), 532-539. https://doi.org/10.1007/s11528-016-0110-z
    Elfert, M.(2019). Lifelong learning in Sustainable Development Goal 4: What does it mean for UNESCO’s rights-based approach to adult learning and education? International Review of Education, 65(4), 537-556. https://doi.org/10.1007/s11159-019-09788-z
    Escobar Fandiño, F. G. & Silva Velandia, A. J.(2020). How an online tutor motivates E-learning English. Heliyon, 6(8), e04630. doi: https://doi.org/10.1016/j.heliyon.2020.e04630
    Gikandi, J. W., Morrow, D. & Davis, N. E.(2011). Online formative assessment in higher education: A review of the literature. Computers and Education, 57(4), 2333-2351. https://doi.org/10.1016/j.compedu.2011.06.004

    Guo, P. J., Kim, J., & Rubin, R. (2014, March). How video production affects student engagement: An empirical study of MOOC videos. In Proceedings of the first ACM conference on Learning@ scale conference (pp. 41-50)
    Hanemann, U.(2019). Examining the application of the lifelong learning principle to the literacy target in the fourth Sustainable Development Goal (SDG 4). International Review of Education, 65(2), 251-275. https://doi.org/10.1007/s11159-019-09771-8
    Juan, Y. K. & Chao, T. W.(2015). Game-based learning for green building education. Sustainability (Switzerland), 7(5), 5592-5608. https://doi.org/10.3390/su7055592
    Keller, J. M. (1983). Motivational design of instruction. Instructional design theories and models: An overview of their current status, 1(1983), 383-434.
    Keller, J. M.(1984). The use of the ARCS model of motivation in teacher training. Aspects of educational technology, 17, 140-145.
    Keller, J. M.(1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2-10.
    Keller, J.M. (2010). Motivational Design for Learning and Performance: The ARCS Model Approach. New York, NY: Springer.
    Kizilcec, R. F., Pérez-Sanagustín, M. & Maldonado, J. J.(2017). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers and Education, 104, 18-33. https://doi.org/10.1016/j.compedu.2016.10.001
    Li, K. & Keller, J. M.(2018). Use of the ARCS model in education: A literature review. Computers & Education, 122, 54-62. https://doi.org/10.1016/j.compedu.2018.03.019

    Lim, D. H., & Morris, M. L. (2009). Learner and instructional factors influencing learning outcomes within a blended learning environment. Journal of Educational Technology & Society, 12(4), 282-293.
    Liu, D., & Zhang, H. (2021). Developing a New Model for Understanding Teacher Satisfaction With Online Learning. SAGE Open, 11(3). https://doi.org/10.1177/21582440211036440
    Lew, S. L., Lau, S. H., & Leow, M. C. (2019). Usability factors predicting continuance of intention to use cloud e-learning application. Heliyon, 5(6), e01788.
    Manurung, E. M., Purwadi, Y. S., & Sugiharto, I. B. (2022). Digital Learning Process: Challenges for Specific Creativity. Electronic Journal of e-Learning, 20(2), 112-119. https://doi.org/10.34190/ejel.20.2.2107
    Moore, J. L., Dickson-Deane, C. & Galyen, K.(2011). e-Learning, online learning, and distance learning environments: Are they the same? The Internet and Higher Education, 14(2), 129-135. https://doi.org/10.1016/j.iheduc.2010.10.001
    Moore, M. G.(1989). Editorial: Three types of interaction. American Journal of Distance Education, 3(2), 1-7. https://doi.org/10.1080/08923648909526659
    Nguyen, T.(2015). The effectiveness of online learning: Beyond no significant difference and future horizons. MERLOT Journal of Online Learning and Teaching, 11(2), 309-319.
    Nuray, G., Ercan, K. & Ozden, M. Y.(2013). Design of a blended learning environment: Considerations and implementation issues. Australasian Journal of Educational Technology, 29(1). https://doi.org/10.14742/ajet.6
    Paechter, M., Maier, B. & Macher, D.(2010). Students’expectations of, and experiences in e-learning: Their relation to learning achievements and course satisfaction. Computers & Education, 54(1), 222-229. https://doi.org/10.1016/j.compedu.2009.08.005
    Panadero, E., Jonsson, A. & Botella, J.(2017). Effects of self-assessment on self-regulated learning and self-efficacy: Four meta-analyses. Educational Research Review, 22, 74-98. https://doi.org/10.1016/j.edurev.2017.08.004
    Pintrich, P. R.(1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
    Putri, R. S., Purwanto, A., Pramono, R., Asbari, M., Wijayanti, L. M. & Hyun, C. C.(2020). Impact of the COVID-19 pandemic on online home learning: An explorative study of primary schools in Indonesia. International Journal of Advanced Science and Technology, 29(5), 4809-4818.
    Radianti, J., Majchrzak, T. A., Fromm, J. & Wohlgenannt, I.(2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers and Education, 147. https://doi.org/10.1016/j.compedu.2019.103778
    Rombot, O., Boeriswati, E. & Suparman, A.(2021). The Development of Blended Learning Model for Reading Comprehension Learning of BIPA Students in Grade V Elementary School. Ilkogretim Online, 20(5).
    Shen, D., Cho, M. H., Tsai, C. L. & Marra, R.(2013). Unpacking online learning experiences: Online learning self-efficacy and learning satisfaction. Internet and Higher Education, 19, 10-17. https://doi.org/10.1016/j.iheduc.2013.04.001

    Sindiani, A. M., Obeidat, N., Alshdaifat, E., Elsalem, L., Alwani, M. M. & Rawashdeh, H. (2020). Distance education during the COVID-19 outbreak: A cross-sectional study among medical students in North of Jordan. Annals of Medicine and Surgery, 59, 186-194. https://doi.org/10.1016/j.amsu.2020.09.036
    Singh, V. & Thurman, A.(2019). How Many Ways Can We Define Online Learning? A Systematic Literature Review of Definitions of Online Learning (1988-2018). American Journal of Distance Education, 33(4), 289-306. https://doi.org/10.1080/08923647.2019.1663082
    Sokout, H. & Usagawa, T.(2021). Improving Academic Performance Through Blended Learning: The Case of Afghan Higher Education. International Journal of Emerging Technologies in Learning, 16(11).
    Stone, D. L., Deadrick, D. L., Lukaszewski, K. M. & Johnson, R.(2015). The influence of technology on the future of human resource management. Human Resource Management Review, 25(2), 216-231. https://doi.org/10.1016/j.hrmr.2015.01.002
    Triyason, T., Tassanaviboon, A., & Kanthamanon, P. (2020, July). Hybrid classroom: Designing for the new normal after COVID-19 pandemic. In Proceedings of the 11th International Conference on Advances in Information Technology (pp. 1-8).
    Turel, Y. K. & Ozer Sanal, S.(2018). The effects of an ARCS based e-book on student's achievement, motivation and anxiety. Computers and Education, 127, 130-140. https://doi.org/10.1016/j.compedu.2018.08.006
    United Nations Educational, Scientific and Cultural Organization (UNESCO) (2016). SDG4—Education 2030 Framework for Action.

    Vrana, R. (2015, May). The developments in mobile learning and its application in the higher education including libraries. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 881-885). IEEE.
    Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G.-J. & Paas, F.(2019). Supporting Self-Regulated Learning in Online Learning Environments and MOOCs: A Systematic Review. International Journal of Human–Computer Interaction, 35(4-5), 356-373. https://doi.org/10.1080/10447318.2018.1543084
    Xu, J., Hu, W., Zhao, S., Lu, H., Gao, B., & Zhao, J. (2020, December). Analysis of the Differences of K-12 Digital Learning Situation from A City in the East of China. In 2020 Ninth International Conference of Educational Innovation through Technology (EITT) (pp. 112-115). IEEE.
    Yang, H.-H. & Su, C.-H.(2017). Learner Behaviour in a MOOC Practice-oriented Course: In Empirical Study Integrating TAM and TPB. International Review of Research in Open and Distributed Learning, 18(5), 35-63. https://doi.org/10.19173/irrodl.v18i5.2991
    Y., Tang. & M., Xu. (2021). Analysis of Online Learning Satisfaction and Influencing Factors of College Students During Epidemic Period:—Based on Probit Model. In 2021 2nd International Conference on Big Data and Informatization Education (ICBDIE), pp. 428-431. IEEE.
    Zheng, S., Rosson, M. B., Shih, P. C., & Carroll, J. M. (2015, February). Understanding student motivation, behaviors and perceptions in MOOCs. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (CSCW '15), pp. 1882-1895. https://doi.org/10.1145/2675133.2675217

    下載圖示
    QR CODE