簡易檢索 / 詳目顯示

研究生: 陳威延
Chen, Wei-Yen
論文名稱: RICAP透過SGK1/FoxO調控C2C12肌肉細胞之分化
RICAP mediates SGK1/FoxO to regulate muscle differentiation in C2C12 cells
指導教授: 林炎壽
Lin, Yenshou
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 38
中文關鍵詞: RICAPSGK1FoxOC2C12分化
英文關鍵詞: RICAP, SGK1, FoxO, C2C12, Differentiation
DOI URL: https://doi.org/10.6345/NTNU202204678
論文種類: 學術論文
相關次數: 點閱:154下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個名為mTOR的酵素在細胞的生長代謝扮演樞紐的角色,舉凡生長因子、營養、能量供給都會透過此蛋白質/酵素使細胞得以存活、生長。在細胞中,mTOR會與不同的蛋白聚合,形成兩類型的複合體:mTOR蛋白複合體I與II。mTOR蛋白複合體I中主要由mTOR、mLST8與Raptor所組成。它會受到生長因子等外來刺激活化活性,透過磷酸化下游分子4EBP1與S6K1影響蛋白質的合成。另一個由mTOR、mLST8、mSIN1與Rictor聚合形成的mTOR蛋白複合體II,相較於mTOR蛋白複合體I,mTOR蛋白複合體II相關研究就少了許多。根據過去實驗室的結果發現,有一個蛋白質因為能與Rictor結合,暫命名為RICAP且和肌肉分化有關。因此,此研究欲探討Rictor/RICAP的下游分子及RICAP如何調節肌肉細胞的分化與型態。我們發現Akt、SGK1而不是PKCζ是位於Rictor/RICAP複合體作用的下游;進一步的研究發現FoxO1、FoxO3的磷酸化在Rictor或RICAP蛋白量降低的肌肉細胞株中有相似的下降,表示FoxO1/3可能是SGK1分子作用的下游;利用Small GTPase活性分析法得知Rac1亦可能牽涉在因RICAP蛋白量降低而使肌肉細胞不能分化的訊息傳遞中。總而言之,RICAP/Rictor/mTORC2在肌肉細胞分化中扮演角色,其機轉可能是透過SGK1/FoxO/分化,並與Rac1有關。

    The serine/threonine kinase, mammalian target of rapamycin (mTOR), plays a crucial role in growth factor, nutrition, and energy supplement by which it controls cellular process such as survival, growth, and metabolism. Through associating with different components in cells, mTOR forms two complexes, named mTORC1 and mTORC2. mTORC1, consisted of mTOR, mLST8 and Raptor, affects protein synthesis via phosphorylation of 4EBP1 and S6K1. mTORC2 is comprised mTOR, mLST8, mSin1, and rictor. Compared to mTORC1, the detail molecular mechanism and signaling transduction regarding of mTORC2 are much less known. A novel protein, named temporarily Rictor associated protein (RICAP), was previously found in a Rictor immunoprecipitation assay and related to muscle differentiation. Hence, this study tends to dissect the downstream signaling of Rictor/RICAP and how RICAP regulates muscular differentiation. We find Akt and SGK1, but not PKCζ, are the downstream proteins of Rictor/RICAP complex. Furthermore, the decrease of FoxO1 phosphorylation is similar in C2C12 containing Rictor or RICAP RNAi. Such a phenomenon was also observed in terms of FoxO3. It means both FoxO1 and FoxO3 are downstream proteins of SGK1. By utilizing GTPase activity assay, Rac1 activity was decreased in either Rictor RNAi or RICAP RNAi cells. Taken together, Rictor/RICAP/mTORC2 plays a crucial role in muscular differentiation by which the mechanism could mediate SGK1/FoxO and possibly relate to Rac1 as well.

    Abstract (Chinese) i Abstract (English) ii Introduction 1 Materials and Methods 7 Results 12 Discussion 16 References 20 Figure 1. RICAP affects insulin-treated phosphorylation of Akt S473 and SGK1 S422, but not phosphorylation of PKCζ T560 26 Figure 2. Verification of antibodies efficacy 29 Figure 3. The phosphorylation of FoxO1 and FoxO3 are affected in insulin-treated C2C12 cells containing either RICAP or Rictor RNAi 31 Figure 4. Knockdown of Rictor or RICAP affects FoxO1 translocation under condition of with or without insulin treatment 33 Figure 5. Establishment of activity assay on Rho Small GTPases family 35 Figure 6. Both Rictor and RICAP RNAi decreases Rac1/Cdc42 activity, but increase RhoA activity 37

    Andres, V., & Walsh, K. (1996). Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol, 132(4), 657-666.
    Bastie, C. C., Nahle, Z., McLoughlin, T., Esser, K., Zhang, W., Unterman, T., & Abumrad, N. A. (2005). FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. J Biol Chem, 280(14), 14222-14229. doi: 10.1074/jbc.M413625200
    Benard, V., Bohl, B. P., & Bokoch, G. M. (1999). Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem, 274(19), 13198-13204.
    Berkes, C. A., & Tapscott, S. J. (2005). MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol, 16(4-5), 585-595.
    Biggs, W. H., 3rd, Meisenhelder, J., Hunter, T., Cavenee, W. K., & Arden, K. C. (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A, 96(13), 7421-7426.
    Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochem J, 348 Pt 2, 241-255.
    Bois, P. R., & Grosveld, G. C. (2003). FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J, 22(5), 1147-1157.
    Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annu Rev Biochem, 72, 743-781.
    Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., & Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6), 857-868.
    Brunet, A., Kanai, F., Stehn, J., Xu, J., Sarbassova, D., Frangioni, J. V., Dalal, S. N., DeCaprio, J. A., Greenberg, M. E., & Yaffe, M. B. (2002). 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol, 156(5), 817-828.
    Brunet, A., Park, J., Tran, H., Hu, L. S., Hemmings, B. A., & Greenberg, M. E. (2001). Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol, 21(3), 952-965.
    Cameron, A. J., Linch, M. D., Saurin, A. T., Escribano, C., & Parker, P. J. (2011). mTORC2 targets AGC kinases through Sin1-dependent recruitment. Biochem J, 439(2), 287-297.
    Daubas, P., & Buckingham, M. E. (2013). Direct molecular regulation of the myogenic determination gene Myf5 by Pax3, with modulation by Six1/4 factors, is exemplified by the -111 kb-Myf5 enhancer. Dev Biol, 376(2), 236-244.
    Deato, M. D., & Tjian, R. (2008). An unexpected role of TAFs and TRFs in skeletal muscle differentiation: switching core promoter complexes. Cold Spring Harb Symp Quant Biol, 73, 217-225.
    Di Pietro, N., Panel, V., Hayes, S., Bagattin, A., Meruvu, S., Pandolfi, A., Hugendubler L., Fejes-Toth, G., Naray-Fejes-Toth, A., & Mueller, E. (2010). Serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates adipocyte differentiation via forkhead box O1. Mol Endocrinol, 24(2), 370-380.
    Dijkers, P. F., Medema, R. H., Pals, C., Banerji, L., Thomas, N. S., Lam, E. W., Hugendubler, L., Fejes-Toth, G., Naray-Fejes-Toth, A., Mueller, E., & Coffer, P. J. (2000). Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol, 20(24), 9138-9148.
    Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M., & Kirschner, M. W. (2002). Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 418(6899), 790-793.
    Eijkelenboom, A., & Burgering, B. M. (2013). FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol, 14(2), 83-97.
    Ekim, B., Magnuson, B., Acosta-Jaquez, H. A., Keller, J. A., Feener, E. P., & Fingar, D. C. (2011). mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol Cell Biol, 31(14), 2787-2801.
    Enwere, E. K., Lacasse, E. C., Adam, N. J., & Korneluk, R. G. (2014). Role of the TWEAK-Fn14-cIAP1-NF-kappaB Signaling Axis in the Regulation of Myogenesis and Muscle Homeostasis. Front Immunol, 5, 34.
    Garcia-Martinez, J. M., & Alessi, D. R. (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J, 416(3), 375-385.
    Govek, E. E., Newey, S. E., & Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes Dev, 19(1), 1-49.
    Guertin, D. A., Stevens, D. M., Thoreen, C. C., Burds, A. A., Kalaany, N. Y., Moffat, J., Brown, M., Fitzgerald, K. J., & Sabatini, D. M. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell, 11(6), 859-871.
    Hribal, M. L., Nakae, J., Kitamura, T., Shutter, J. R., & Accili, D. (2003). Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol, 162(4), 535-541.
    Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M. A., Hall, A., & Hall, M. N. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol, 6(11), 1122-1128.
    Jacinto, E., & Lorberg, A. (2008). TOR regulation of AGC kinases in yeast and mammals. Biochem J, 410(1), 19-37.
    Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., Huang, T. T., Bos, J. L., Medema, R. H., & Burgering, B. M. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 419(6904), 316-321.
    Lamming, D. W. (2014). Diminished mTOR signaling: a common mode of action for endocrine longevity factors. Springerplus, 3, 735.
    Li, X., & Gao, T. (2014). mTORC2 phosphorylates protein kinase Czeta to regulate its stability and activity. EMBO Rep, 15(2), 191-198.
    Lin, C. (2014). RICAP, a novel associated protein of rictor, is essential in muscle myogenesis (Unpublished Master’s thesis). National Taiwan Normal University, Taipei, R.O.C.
    Lin, Y., Khokhlatchev, A., Figeys, D., & Avruch, J. (2002). Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J Biol Chem, 277(50), 47991-48001.
    Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., & Lim, L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458), 40-46.
    Monani, U. R. (2005). Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron, 48(6), 885-896.
    Naya, F. J., & Olson, E. (1999). MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol, 11(6), 683-688.
    Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., Tissenbaum, H. A., & Ruvkun, G. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature, 389(6654), 994-999.
    Park, I. H., & Chen, J. (2005). Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation. J Biol Chem, 280(36), 32009-32017.
    Peserico, A., Chiacchiera, F., Grossi, V., Matrone, A., Latorre, D., Simonatto, M., Fusella, A., Ryall, J. G., Finley, L. W., Haigis, M. C., Villani, G., Puri, P. L., Sartorelli, V., & Simone, C. (2013). A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cell Mol Life Sci, 70(11), 2015-2029.
    Rathbone, C. R., Booth, F. W., & Lees, S. J. (2008). FoxO3a preferentially induces p27Kip1 expression while impairing muscle precursor cell-cycle progression. Muscle Nerve, 37(1), 84-89.
    Ren, X. D., Kiosses, W. B., & Schwartz, M. A. (1999). Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J, 18(3), 578-585.
    Rena, G., Guo, S., Cichy, S. C., Unterman, T. G., & Cohen, P. (1999). Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem, 274(24), 17179-17183.
    Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401-410.
    Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., & Kirschner, M. W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221-231.
    Rojas, A. M., Fuentes, G., Rausell, A., & Valencia, A. (2012). The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol, 196(2), 189-201.
    Sanchez, A. M., Candau, R. B., & Bernardi, H. (2014). FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci, 71(9), 1657-1671.
    Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., Tempst, P., & Sabatini, D. M. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol, 14(14), 1296-1302.
    Sarbassov, D. D., Ali, S. M., Sengupta, S., Sheen, J. H., Hsu, P. P., Bagley, A. F., Markhard, A. L., & Sabatini, D. M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell, 22(2), 159-168.
    Schagger, H. (2006). Tricine-SDS-PAGE. Nat Protoc, 1(1), 16-22. doi: 10.1038/nprot.2006.4
    Senf, S. M., Sandesara, P. B., Reed, S. A., & Judge, A. R. (2011). p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol, 300(6), C1490-1501.
    Seoane, J., Le, H. V., Shen, L., Anderson, S. A., & Massague, J. (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 117(2), 211-223.
    Shu, L., & Houghton, P. J. (2009). The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts. Mol Cell Biol, 29(17), 4691-4700.
    Smith, L. G., & Li, R. (2004). Actin polymerization: riding the wave. Curr Biol, 14(3), R109-111.
    Spurney, C. F. (2011). Cardiomyopathy of Duchenne muscular dystrophy: current understanding and future directions. Muscle Nerve, 44(1), 8-19.
    Tessier, M., & Woodgett, J. R. (2006). Serum and glucocorticoid-regulated protein kinases: variations on a theme. J Cell Biochem, 98(6), 1391-1407.
    Thoreen, C. C., Chantranupong, L., Keys, H. R., Wang, T., Gray, N. S., & Sabatini, D. M. (2012). A unifying model for mTORC1-mediated regulation of mRNA translation. Nature, 485(7396), 109-113.
    Toschi, A., Lee, E., Xu, L., Garcia, A., Gadir, N., & Foster, D. A. (2009). Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol, 29(6), 1411-1420.
    Tran, H., Brunet, A., Grenier, J. M., Datta, S. R., Fornace, A. J., Jr., DiStefano, P. S., Chiang, L. W., & Greenberg, M. E. (2002). DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science, 296(5567), 530-534.
    Tsuchida, A., Yamauchi, T., Ito, Y., Hada, Y., Maki, T., Takekawa, S., Kamon, J., Kobayashi, M., Suzuki, R., Hara, K., Kubota, N., Terauchi, Y., Froguel, P., Nakae, J., Kasuga, M., Accili, D., Tobe, K., Ueki, K., & Nagai, R., Kadowaki, T. (2004). Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem, 279(29), 30817-30822.
    Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., & Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol, 1(3), 136-143.
    Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell, 124(3), 471-484.
    Yoon, M. S., & Chen, J. (2013). Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis. Mol Biol Cell, 24(23), 3754-3763.

    下載圖示
    QR CODE