研究生: |
張庭韶 Chang, Tin-Shao |
---|---|
論文名稱: |
無人機以動態飛行協助搜尋與救援行動 Assisting Search and Rescue Using UAV with Dynamic Path Planning |
指導教授: | 賀耀華 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 無人航空載具(無人機) 、搜尋與救援 、定位預估 、路徑規劃 |
英文關鍵詞: | Unmanned Aerial Vehicle (UAV), Search and Rescue (SAR) Operation, Location Estimation, Path Planning |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DCSIE.007.2018.B02 |
論文種類: | 學術論文 |
相關次數: | 點閱:328 下載:44 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在大規模災害發生的環境下,地形與時間的限制是目前搜救團隊所面臨的最大問題,因此也越來越多案例使用無人機來對災害環境進行勘查,情報的蒐集以及定位受災戶位置。
本研究利用了當今社會手機普及率的特性,由無人機搜尋手機無線訊號位置,也因無線訊號的特性,結合RSSI與Log-Distance Model,來預估當前無人機位置與訊號源間的距離。因此比起生命探測儀,更能從較大範圍的距離下開始搜查任務。此外,我們也設計了一種動態路徑規劃(Dynamic Path Planning)演算法,能夠根據現場無線訊號源的變化,使得無人機可以更快速接近受災戶,並定位出其位置。研究致力的方向為縮小搜尋時間與定位誤差,蒐集現場環境情報來提供給搜救團隊參考。而最後我們實驗的結果也顯示了使用了動態規劃演算法,比起一般的固定路徑規劃,更快速且精準的定位出受災戶位置。
In a large disaster area, search and rescue (SAR) operations can face great challenges due unfriendly, inaccessible, or even danger terrains for rescue teams. Unmanned Aerial Vehicle (UAV) is a good option to assist operations support searching victims and collecting information in the disaster area. In this research, a UAV is used to detect wireless signal from smart phones to locate possible victims. Using Received Signal Strength Indicator (RSSI) and path loss model (i.e., Log-Distance model), the distance between the UAV and the wireless signal source (e.g., smart phone) can be estimated. With the estimated distance, we propose a Dynamic Path Planning (DPP) algorithm for UAV to assist SAR operations. It allows UAV dynamically adjust its search path based on the estimated location of the victim. Our approach is able to reduce the search time and minimize the location error. We show in our experiment studies DPP provides a more accurate location estimation with less time compare with other fixed-path searching (i.e., half-circle and two-leaf) algorithms.
[1] Ho, Yao-Hua, Yu-Ren Chen, and Ling-Jyh Chen. "Krypto: Assisting Search and Rescue Operations using Wi-Fi Signal with UAV." Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use. ACM, 2015.
[2] Lin, Lanny, and Michael A. Goodrich. "Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning." IEEE transactions on cybernetics, 44.12: p.2532-2544, 2014.
[3] Sohn, Subong, et al. "Vision-based real-time target localization for single-antenna GPS-guided UAV." IEEE Transactions on Aerospace and Electronic Systems, 44.4: p.1391-1401, 2008.
[4] Bitton, Ephrat, and Ken Goldberg. "Hydra: A framework and algorithms for mixed-initiative uav-assisted search and rescue." IEEE International Conference on Automation Science and Engineering, 2008.
[5] Artemenko, Oleksandr, et al. "How different trajectories of moving beacons influence the localization of nodes in disaster scenarios using wireless communication." IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC), 2014.
[6] Agcayazi, M. Talha, et al. "ResQuad: Toward a semi-autonomous wilderness search and rescue unmanned aerial system." IEEE International Conference on Unmanned Aircraft Systems (ICUAS), 2016.
[7] Shahidian, Seyyed Ali Asghar, and Hadi Soltanizadeh. "Path planning for two unmanned aerial vehicles in passive localization of radio sources." Aerospace Science and Technology 58: p.189-196, 2016.
[8] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013–2018. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
[9] Rudol, Piotr, and Patrick Doherty. "Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery." IEEE Aerospace Conference, 2008.
[10] Goodrich, Michael A., et al. "Supporting wilderness search and rescue using a camera‐equipped mini UAV." Journal of Field Robotics 25.1‐2: p.89-110, 2008.
[11] Bitton, Ephrat, and Ken Goldberg. "Hydra: A framework and algorithms for mixed-initiative uav-assisted search and rescue." IEEE International Conference on Automation Science and Engineering, 2008.
[12] Dinnbier, Núria Martínez, et al. "Target detection using Gaussian mixture models and fourier transforms for UAV maritime search and rescue." IEEE International Conference on Unmanned Aircraft Systems (ICUAS), 2017.
[13] Erceg, Vinko, et al. "An empirically based path loss model for wireless channels in suburban environments." IEEE Journal on selected areas in communications 17.7: p.1205-1211, 1999.
[14] Zickler, Stefan, and Manuela Veloso. "RSS-based relative localization and tethering for moving robots in unknown environments." IEEE International Conference on Robotics and Automation (ICRA), 2010.
[15] Artemenko, Oleksandr, et al. "How different trajectories of moving beacons influence the localization of nodes in disaster scenarios using wireless communication." IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC), 2014.
[16] da Silva, Rone Ilídio, and Mario A. Nascimento. "On best drone tour plans for data collection in wireless sensor network." Proceedings of the 31st Annual ACM Symposium on Applied Computing, 2016.
[17] DJI Official Website. Available: https://developer.dji.com/mobile-sdk/documentation/introduction/flightController_concepts.html
[18] Parkinson, Bradford W. Progress in astronautics and aeronautics: Global positioning system: Theory and applications. Vol. 2. Aiaa, 1996.
[19] Ni, Lionel M., et al. "LANDMARC: indoor location sensing using active RFID." Wireless networks 10.6: p.701-710, 2004.
[20] Park, Jun-geun, et al. "Growing an organic indoor location system." Proceedings of the 8th ACM international conference on Mobile systems, applications, and services, 2010.
[21] He, Tian, et al. "Range-free localization schemes for large scale sensor networks." Proceedings of the 9th ACM annual international conference on Mobile computing and networking, 2003.
[22] Hartley, Richard I., and Peter Sturm. "Triangulation." Computer vision and image understanding 68.2: p.146-157, 1997.
[23] Sahu, Pratap Kumar, Eric Hsiao-Kuang Wu, and Jagruti Sahoo. "DuRT: Dual RSSI trend based localization for wireless sensor networks." IEEE Sensors Journal 13.8: p.3115-3123, 2013.
[24] ZHANG, Zheng, Zhi-xun RAO, and Zhi-feng HUANG. "Some methods of RSSI filtering in wireless sensor networks." Modern Electronics Technique 20: 003, 2013.
[25] Kalman, Rudolph Emil. "A new approach to linear filtering and prediction problems." Journal of basic Engineering 82.1: p.35-45, 1960.
[26] Faragher, Ramsey. "Understanding the basis of the kalman filter via a simple and intuitive derivation [lecture notes]." IEEE Signal processing magazine 29.5: p.128-132, 2012.
[27] Papamanthou, Charalampos, Franco P. Preparata, and Roberto Tamassia. "Algorithms for location estimation based on rssi sampling." International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics. Springer, Berlin, Heidelberg, 2008.
[28] Cheng, Linsong, and Jiliang Wang. "How can I guard my AP?: non-intrusive user identification for mobile devices using WiFi signals." Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. 2016.
[29] Happe, Jens, and Jean Berger. "Couav: a multi-uav cooperative search path planning simulation environment." Proceedings of the 2010 Summer Computer Simulation Conference. Society for Computer Simulation International, 2010.