簡易檢索 / 詳目顯示

研究生: 陳麗年
Chen, Li-Nian
論文名稱: KIF12在大腸癌細胞中調控自噬作用與細胞外囊泡形成之角色
Role of KIF12 in The Regulation of Cell Autophagy and Extracellular vesicles Formation in Colorectal Cancer
指導教授: 賴韻如
Lai, Yun-Ju
口試委員: 謝嘉玲 賴品光 賴韻如
口試日期: 2022/01/25
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 48
中文關鍵詞: 驅動蛋白家族成員12大腸癌自噬作用細胞外囊泡
英文關鍵詞: KIF12, Colorectal Cancer, Autophagy, Extracellular vesicles
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200331
論文種類: 學術論文
相關次數: 點閱:71下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 驅動蛋白家族成員 12(Kinesin Family Member 12;KIF12)是一種
    微管相關的運動蛋白,在細胞分裂及囊泡運輸中扮演重要角色。我
    們之前發現 KIF12 的表現量在大腸癌的組織比起正常組織有升高的
    現象,並且會促進大腸癌幹細胞的增殖。為更了解 KIF12 對大腸癌
    細胞的調控,我們進一步探討其對細胞自噬作用(autophagy)與外泌
    體(exosome)生成之影響。細胞中自噬作用泛指將細胞質內容物吞
    噬,形成自噬泡並送至溶酶體內降解的路徑,它的功能主要在於分
    解細胞內異常摺疊或堆積的蛋白質以及清除老化的胞器。細胞中自
    噬作用異常與癌症、神經及心血管退化性疾病形成皆有相關。外泌
    體是由內體(endosome)衍生的多囊泡體產生,包裹部分細胞內容物
    後分泌到細胞外。有研究指出外泌體的形成與自噬作用在維持細胞
    穩定及腫瘤細胞轉移中有協同作用。為深入探討 KIF12 是否調節大
    腸癌細胞以及其癌幹細胞自噬與外泌的能力,我們利用
    Lipofectamine 2000 將削弱 KIF12 的 shRNA 轉染至
    SW480(shKIF12),並利用 CRISPR 系統建立剔除 KIF12 的穩定細胞
    株(CR-KIF12),來探討 KIF12 對此二功能之影響。我們以 GFP-LC3
    融合蛋白質表現載體及酸性胞器染劑 Lysotracker red 來偵測細胞自
    噬作用。同時,我們利用外泌體的報告質體 PalmGRET reporter 來偵
    測細胞外泌體的生成與 KIF12 蛋白質之相關性。結果發現降低
    KIF12 的表現會抑制細胞因饑餓引發的自噬作用與外泌體生成。

    Kinesin family member 12 (KIF12) is a microtubule-associated motor
    protein that plays an important role in cytokinesis and vesicular transport.
    We have found that the expression level of KIF12 is higher in colorectal
    cancer tissues than in normal tissues. It also promotes the proliferation of
    colorectal cancer stem cells (CSC). To understand the regulation of
    KIF12 on colorectal cancer cells, we further explored its effects on
    autophagy and exosome formation. Autophagy is a cellular process that
    includes autophagosome forming and fusing with lysosome to degrade
    the cellular components. Its main function is to degrade cellular proteins
    with abnormal folding and aged organelles, and to recycle useful
    materials to maintain the normal physiological function of the cell. It has
    been known that aberrant autophagy correlates with cancer, neuronal and
    cardiovascular diseases. Exosomes are generated by multiple intraluminal
    vesicles derived from multivesicular bodies, which carry cell-specific
    cargos of proteins, lipids, and genetic materials. Studies have pointed out
    that autophagy and the formation of exosomes have a synergistic effect in
    maintaining cell stability and tumor cell metastasis. To further explore
    whether KIF12 regulates the autophagy and exocytosis of colorectal
    cancer cells and their CSCs, we used Lipofectamine 2000 to transient
    transfect KIF12 shRNA into SW480, and also establish the stable cell
    lines that knocked out KIF12 by CRISPR system. Moreover, we
    quantified autophagosome formation-level by counting GFP-LC3
    colocalized with lysotracker red staining. At the same time, we took the
    advantage of exosome reporter, palmGRET, to study the correlation
    between the production of cellular exosomes and KIF12. Our results
    showed that downregulated KIF12 expression inhibits starvation-induced
    autophagy and exosome formation.

    縮寫表 i 致謝 ii 中文摘要 iii Abstract iv 一、 緒論 1 1. 大腸結腸癌 (Colorectal cancer; CRC) 1 2. 驅動蛋白家族成員12 (Kinesin Family Member 12; KIF12) 2 3. 自噬作用(Autophagy) 3 4. 外泌體(Exosome) 4 5. 研究目的 6 二、 研究方法與材料 6 1. 細胞培養(cell culture) 6 2. 菌株培養(bacterial culture) 7 3. 質體萃取(Plasmid extract) 7 4. 細胞株建立(Establishment of cell line) 8 5. RNA及蛋白質萃取(RNA and Protein Extraction) 9 6. 基因體DNA萃取(Genomic DNA Extraction) 9 7. 聚合酶連鎖反應(Polymerase chain reaction; PCR) 10 8. 膠體萃取及定序分析 10 9. 西方墨點法(Western blot) 11 10. 活細胞即時顯微影像(Time-Lapse Live Cell Images) 12 11. 圖像分析 13 12. 統計分析 14 三、 結果 15 1. 削弱KIF12會抑制細胞自噬作用 15 2. 觀測細胞株的細胞外囊泡 16 3. 建立剔除KIF12的穩定細胞株(KO KIF12) 17 4. KIF12-CRcontrol與KIF12-CR5的細胞定序 18 5. 細胞的自噬作用在KIF12-CR5中有降低的現象 19 6. 觀測KIF12-CR5細胞株的細胞外囊泡 19 四、 討論 21 五、 圖表 25 圖1. 削弱KIF12會抑制細胞自噬作用 26 圖2. 觀測細胞株的細胞外囊泡 27 圖3. 削弱KIF12細胞的細胞外囊泡數量較少 29 圖4. 削弱KIF12會減少細胞外囊泡數量 31 圖5. 建立剔除KIF12的穩定細胞株 33 圖6. KIF12-CRcontrol與KIF12-CR5細胞定序結果 34 圖7. 觀測KIF12-CRcontrol及KIF12-CR5的細胞自噬作用 36 圖8. 觀測KIF12-CRcontrol及KIF12-CR5細胞株的細胞外囊泡 38 圖9. KIF12-CR5細胞株的細胞外囊泡數量減少 40 六、 參考資料 41

    1. Marmol, I., et al., Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int J Mol Sci, 2017. 18(1).
    2. Haggar, F.A. and R.P. Boushey, Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg, 2009. 22(4): p. 191-7.
    3. Wu, J.S., Rectal cancer staging. Clin Colon Rectal Surg, 2007. 20(3): p. 148-57.
    4. Hadjipetrou, A., et al., Colorectal cancer, screening and primary care: A mini literature review. World J Gastroenterol, 2017. 23(33): p. 6049-6058.
    5. Florescu-Ţenea, R.M., et al., Colorectal Cancer: An Update on Treatment Options and Future Perspectives. Curr Health Sci J, 2019. 45(2): p. 134-141.
    6. Damin, D.C. and A.R. Lazzaron, Evolving treatment strategies for colorectal cancer: a critical review of current therapeutic options. World J Gastroenterol, 2014. 20(4): p. 877-87.
    7. Zhou, Y., et al., Cancer stem cells in progression of colorectal cancer. Oncotarget, 2017. 9(70): p. 33403-33415.
    8. Lévy, J., et al., Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nature Cell Biology, 2015. 17(8): p. 1062-1073.
    9. Hu, Y., et al., Fibroblast-Derived Exosomes Contribute to Chemoresistance through Priming Cancer Stem Cells in Colorectal Cancer. PloS one, 2015. 10(5): p. e0125625-e0125625.
    10. Colletti, M., et al., Autophagy and Exosomes Relationship in Cancer: Friends or Foes? Frontiers in cell and developmental biology, 2021. 8: p. 614178-614178.
    11. Liou, W., et al., The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol, 1997. 136(1): p. 61-70.
    12. Mazure, N.M. and J. Pouysségur, Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol, 2010. 22(2): p. 177-80.
    13. Chiavarina, B., et al., HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis. Cell Cycle, 2010. 9(17): p. 3534-51.
    14. Bellot, G., et al., Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol, 2009. 29(10): p. 2570-81.
    15. Yu, Y. and Y.M. Feng, The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular targets for cancer therapy. Cancer, 2010. 116(22): p. 5150-60.
    16. Chen, Q., et al., The localization of inner centromeric protein (INCENP) at the cleavage furrow is dependent on Kif12 and involves interactions of the N terminus of INCENP with the actin cytoskeleton. Mol Biol Cell, 2007. 18(9): p. 3366-74.
    17. Hirokawa, N. and Y. Tanaka, Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Experimental Cell Research, 2015. 334(1): p. 16-25.
    18. Yang, W., et al., Antioxidant Signaling Involving the Microtubule Motor KIF12 Is an Intracellular Target of Nutrition Excess in Beta Cells. Developmental Cell, 2014. 31(2): p. 202-214.
    19. Liu, X., H. Gong, and K. Huang, Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Science, 2013. 104(6): p. 651-656.
    20. Taniwaki, M., et al., Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res, 2007. 13(22 Pt 1): p. 6624-31.
    21. Sanhaji, M., et al., Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target. Oncotarget, 2011. 2(12): p. 935-947.
    22. Tan, M.H., et al., Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer. Breast Cancer Res Treat, 2012. 131(3): p. 849-58.
    23. Cardoso, C.M.P., et al., Depletion of Kinesin 5B Affects Lysosomal Distribution and Stability and Induces Peri-Nuclear Accumulation of Autophagosomes in Cancer Cells. PLOS ONE, 2009. 4(2): p. e4424.
    24. Kruger, S., et al., Molecular characterization of exosome-like vesicles from breast cancer cells. BMC cancer, 2014. 14: p. 44-44.
    25. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.
    26. Yang, Z. and D.J. Klionsky, Eaten alive: a history of macroautophagy. Nat Cell Biol, 2010. 12(9): p. 814-22.
    27. Klionsky, D.J. and S.D. Emr, Autophagy as a regulated pathway of cellular degradation. Science, 2000. 290(5497): p. 1717-21.
    28. Dikic, I., T. Johansen, and V. Kirkin, Selective autophagy in cancer development and therapy. Cancer Res, 2010. 70(9): p. 3431-4.
    29. Liao, X., et al., Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab, 2012. 15(4): p. 545-53.
    30. Schaeffer, V., et al., Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain, 2012. 135(Pt 7): p. 2169-77.
    31. Burada, F., et al., Autophagy in colorectal cancer: An important switch from physiology to pathology. World J Gastrointest Oncol, 2015. 7(11): p. 271-84.
    32. Galluzzi, L., et al., Autophagy in malignant transformation and cancer progression. Embo j, 2015. 34(7): p. 856-80.
    33. Nazio, F., et al., Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death & Differentiation, 2019. 26(4): p. 690-702.
    34. Ojha, R., S. Bhattacharyya, and S.K. Singh, Autophagy in Cancer Stem Cells: A Potential Link Between Chemoresistance, Recurrence, and Metastasis. BioResearch open access, 2015. 4(1): p. 97-108.
    35. Sato, K., et al., Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res, 2007. 67(20): p. 9677-84.
    36. Barth, S., D. Glick, and K.F. Macleod, Autophagy: assays and artifacts. The Journal of pathology, 2010. 221(2): p. 117-124.
    37. Zhao, H., et al., High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer. Med Oncol, 2013. 30(1): p. 475.
    38. Cao, Q.H., et al., Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1 in gastric cancer. Am J Transl Res, 2016. 8(9): p. 3831-3847.
    39. Crescitelli, R., et al., Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles, 2013. 2.
    40. Hessvik, N.P. and A. Llorente, Current knowledge on exosome biogenesis and release. Cell Mol Life Sci, 2018. 75(2): p. 193-208.
    41. Yáñez-Mó, M., et al., Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015. 4(1): p. 27066.
    42. Valadi, H., et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007. 9(6): p. 654-659.
    43. Seimiya, T., et al., Emerging Roles of Exosomal Circular RNAs in Cancer. 2020. 8(1112).
    44. Pan, L., et al., Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol, 2017. 143(6): p. 991-1004.
    45. Maia, J., et al., Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front Cell Dev Biol, 2018. 6: p. 18.
    46. Gutkin, A., et al., Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells. Oncotarget, 2016. 7(37): p. 59173-59188.
    47. Costa-Silva, B., et al., Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol, 2015. 17(6): p. 816-26.
    48. Raposo, G. and W. Stoorvogel, Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 2013. 200(4): p. 373-383.
    49. Théry, C., et al., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018. 7(1).
    50. Kowal, J., et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences, 2016. 113(8): p. E968.
    51. Macías, M., et al., Liquid Biopsy: From Basic Research to Clinical Practice. Adv Clin Chem, 2018. 83: p. 73-119.
    52. Xiao, Y., et al., Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Letters, 2020. 476: p. 13-22.
    53. Zhou, B., et al., Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 144.
    54. Tannetta, D., et al., Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J Reprod Immunol, 2017. 119: p. 98-106.
    55. KIF12在大腸癌幹細胞中所扮演的角色. 2019.
    56. King, H.W., M.Z. Michael, and J.M. Gleadle, Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 2012. 12: p. 421.
    57. He, W.-S., et al., Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation. 2012. 20(5-6): p. 251-258.
    58. Hood, J.L., et al., Paracrine induction of endothelium by tumor exosomes. Lab Invest, 2009. 89(11): p. 1317-28.
    59. Santos, P. and F. Almeida, Role of Exosomal miRNAs and the Tumor Microenvironment in Drug Resistance. Cells, 2020. 9(6).
    60. Park, J.E., et al., Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics, 2010. 9(6): p. 1085-99.
    61. Surve, S.V., et al., Localization dynamics of endogenous fluorescently labeled RAF1 in EGF-stimulated cells. 2019. 30(4): p. 506-523.
    62. Lamb, C.A., J. Joachim, and S.A. Tooze, Quantifying Autophagic Structures in Mammalian Cells Using Confocal Microscopy. Methods Enzymol, 2017. 587: p. 21-42.
    63. Yoshii, S.R. and N. Mizushima, Monitoring and Measuring Autophagy. Int J Mol Sci, 2017. 18(9).
    64. Wu, A.Y.-T., et al., Multi-resolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism. 2020: p. 2020.03.27.012625.
    65. Choi, D., et al., The Impact of Oncogenic EGFRvIII on the Proteome of Extracellular Vesicles Released from Glioblastoma Cells. Mol Cell Proteomics, 2018. 17(10): p. 1948-1964.
    66. Nikoletopoulou, V., et al., Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013. 1833(12): p. 3448-3459.
    67. Pattingre, S., et al., Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell, 2005. 122(6): p. 927-939.
    68. Maiuri, M.C., et al., Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. The EMBO Journal, 2007. 26(10): p. 2527-2539.
    69. Li, X., S. He, and B. Ma, Autophagy and autophagy-related proteins in cancer. Molecular Cancer, 2020. 19(1): p. 12.
    70. Mizushima, N. and M. Komatsu, Autophagy: Renovation of Cells and Tissues. Cell, 2011. 147(4): p. 728-741.
    71. Pankiv, S., et al., FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol, 2010. 188(2): p. 253-69.
    72. Cardoso, C.M., et al., Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells. PLoS One, 2009. 4(2): p. e4424.
    73. Yu, L., Y. Chen, and S.A. Tooze, Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018. 14(2): p. 207-215.
    74. Dagda, R.K., et al., Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy, 2008. 4(6): p. 770-82.
    75. Chu, C.T., et al., Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol, 2009. 453: p. 217-49.
    76. MANDERS, E.M.M., F.J. VERBEEK, and J.A. ATEN, Measurement of co-localization of objects in dual-colour confocal images. 1993. 169(3): p. 375-382.
    77. Costes, S.V., et al., Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J, 2004. 86(6): p. 3993-4003.
    78. Dai, J., et al., Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 145.
    79. Wu, X., et al., Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling. Cancer Lett, 2020. 478: p. 93-106.
    80. Hegmans, J.P., et al., Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol, 2004. 164(5): p. 1807-15.
    81. Xu, R., et al., Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods, 2015. 87: p. 11-25.
    82. Baixauli, F., C. López-Otín, and M. Mittelbrunn, Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol, 2014. 5: p. 403.
    83. Yoon, S., et al., MLKL, the Protein that Mediates Necroptosis, Also Regulates Endosomal Trafficking and Extracellular Vesicle Generation. Immunity, 2017. 47(1): p. 51-65.e7.
    84. Fader, C.M., et al., Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. 2008. 9(2): p. 230-250.
    85. Jeppesen, D.K., et al., Reassessment of Exosome Composition. Cell, 2019. 177(2): p. 428-445.e18.
    86. Hessvik, N.P., et al., PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci, 2016. 73(24): p. 4717-4737.
    87. Wang, K., et al., Mechanical stress-dependent autophagy component release via extracellular nanovesicles in tumor cells. 2019. 13(4): p. 4589-4602.
    88. McAndrews, K.M. and R. Kalluri, Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer, 2019. 18(1): p. 52.
    89. Le, M., et al., Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect. PLoS One, 2017. 12(3): p. e0173685.

    下載圖示
    QR CODE