研究生: |
王保元 Wang, Pao-Yuan |
---|---|
論文名稱: |
藉由轉錄體導引治療策略評估植化素Withaferin A誘導乳癌細胞之鐵依賴性細胞死亡 Elucidating phytochemical Withaferin A-induced ferroptosis in breast cancer cells via transcriptome-guided therapeutic strategies |
指導教授: |
蘇純立
Su, Chun-Li |
口試委員: |
蕭寧馨
Shaw, Ning-Sing 黃奇英 Huang, Chi-Ying 蘇純立 Su, Chun-Li |
口試日期: | 2023/07/07 |
學位類別: |
碩士 Master |
系所名稱: |
營養科學碩士學位學程 Graduate Program of Nutrition Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 乳癌 、鐵依賴性細胞死亡 、Withaferin A 、基因分析 |
英文關鍵詞: | breast cancer, ferroptosis, Withaferin A, gene analysis |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301483 |
論文種類: | 學術論文 |
相關次數: | 點閱:232 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵依賴性細胞死亡(ferroptosis)為一種新型態的細胞死亡方式,透過鐵代謝失調造成脂質過氧化物堆積所導致。本研究結果指出臨床生存率低的乳癌患者具較高的HMOX-1(鐵釋出)以及較低的FTH1(鐵儲存)與SLC40A1(鐵排出)表現,此現象有助於利用ferroptosis作為治療策略。相較於Luminal A亞型的MCF-7細胞,三陰性乳癌MDA-MB-231細胞對臨床用藥有較高的抗藥性,但對ferroptosis敏感度較佳。MDA-MB-231相較於MCF-7,在鐵代謝相關蛋白、脂質合成能力與間質細胞標誌表現量較高,抗氧化能力卻較薄弱。本研究透過轉錄體導引治療策略發現南非醉茄的酯類成分Withaferin A(WA)具有作為新型態ferroptosis誘導物的潛力。實驗證實RSL3與WA在MDA-MB-231所引起的細胞死亡可被脂質過氧化物清除劑(ferrostatin-1,Fer-1)與鐵螯合劑(deferoxamine)恢復。WA造成之MDA-MB-231脂質過氧化物大量累積可被Fer-1所降低,但MCF-7無此現象。機制研究發現WA引起兩種參與ferroptosis的路徑,可透過降低GPX4、xCT與Nrf2活化典型路徑,同時藉由自噬體包裹FTH1後降解與減少FPN表現以活化非典型路徑。綜合以上結果,WA為新型態ferroptosis誘導物,且對於Luminal A與TNBC兩種亞型之間有選擇性誘導TNBC產生ferroptosis的能力,可做為解決TNBC臨床預後不佳的治療策略之一。
Ferroptosis is a new type of regulated cell death driven by lipid peroxidation from dysregulated iron metabolism. Our results showed that breast cancer patients with higher HMOX1 (iron release) and lower FTH1 (iron storage) and SLC40A1 (iron export) expressions have shorter survival, indicating susceptibility of advanced breast cancer to ferroptosis. Compared to luminal A MCF-7 cells, triple-negative breast cancer (TNBC) MDA-MB-231 cells were resistant to anticancer drugs but sensitive to ferroptosis inducer (RSL3). This was paralleled by higher iron metabolism, fatty acid synthesis and mesenchymal marker as well as lower antioxidation genes expressions in MDA-MB-231 than MCF-7. Importantly, transcriptome-guided therapeutic strategies identified natural ester Withaferin A (WA) as a novel ferroptosis inducer. Indeed, RSL3- and WA-triggered cell death was more pronounced in MDA-MB-231, which was attenuated by lipid ROS scavenger (ferrostatin-1) and iron chelator (deferoxamine) separately. WA-elevated lipid ROS in MDA-MB-231 but not MCF-7 was reversed by ferrostatin-1. Mechanistically, WA activated both canonical ferroptosis characterized by reduced GPX4, xCT and Nrf2 and non-canonical ferroptosis depicted by NCOA4-mediated ferritinophagy and diminished ferroportin. Collectively, our data demonstrated WA as a potential ferroptosis inducer, revealed a discrepancy between TNBC and luminal A in ferroptosis and proposed a strategy to overcome poor prognosis of TNBC via WA-triggered ferroptosis.
Anandhan, A., Dodson, M., Shakya, A., Chen, J., Liu, P., Wei, Y., et al. (2023). NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Science Advances, 9(5):eade9585.
Andrews, N. C., & Schmidt, P. J. (2007). Iron Homeostasis. Annual Review of Physiology, 69(1), 69-85. Basuli, D., Tesfay, L., Deng, Z., Paul, B., Yamamoto, Y., Ning, G., et al. (2017). Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene, 36(29):4089-4099.
Battaglia, A. M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F., & Biamonte, F. (2020). Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death. Cells, 9(6):1505
Berr, A. L., Wiese, K., dos Santos, G., Koch, C. M., Anekalla, K. R., Kidd, M., et al. (2023). Vimentin is required for tumor progression and metastasis in a mouse model of non–small cell lung cancer. Oncogene, 42(25):2074-2087.
Braughler, J. M., Duncan, L. A., & Chase, R. L. (1986). The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem, 261(22):10282-10289.
Chaturvedi, D., Balaji, S. A., Bn, V. K., Ariese, F., Umapathy, S., & Rangarajan, A. (2016). Different Phases of Breast Cancer Cells: Raman Study of Immortalized, Transformed, and Invasive Cells. Biosensors (Basel), 6(4):57
Creighton, C. J., Li, X., Landis, M., Dixon, J. M., Neumeister, V. M., Sjolund, A., et al. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A, 106(33):13820-13825.
Daniels, T. R., Bernabeu, E., Rodríguez, J. A., Patel, S., Kozman, M., Chiappetta, D. A., et al. (2012). The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta, 1820(3):291-317.
DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475(7354):106-109.
Dinarvand, N., Khanahmad, H., Hakimian, S. M., Sheikhi, A., Rashidi, B., & Pourfarzam, M. (2020). Evaluation of long-chain acyl-coenzyme A synthetase 4 (ACSL4) expression in human breast cancer. Res Pharm Sci, 15(1):48-56.
Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5):1060-1072.
Dixon, S. J., & Stockwell, B. R. (2019). The Hallmarks of Ferroptosis. Annual Review of Cancer Biology, 3(1), 35-54.
Doll, S., Proneth, B., Tyurina, Y. Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 13(1):91-98.
Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., et al. (2014). Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology, 16(11):1069-1079.
Drummen, G. P., van Liebergen, L. C., Op den Kamp, J. A., & Post, J. A. (2002). C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med, 33(4):473-490.
Fong, M. Y., Jin, S., Rane, M., Singh, R. K., Gupta, R., & Kakar, S. S. (2012). Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLOS ONE, 7(7):e42265.
Fonseca-Nunes, A., Jakszyn, P., & Agudo, A. (2014). Iron and cancer risk--a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev, 23(1):12-31.
Friedmann Angeli, J. P., Schneider, M., Proneth, B., Tyurina, Y. Y., Tyurin, V. A., Hammond, V. J., et al. (2014). Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 16(12):1180-1191.
Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J., & Jiang, X. (2016). Ferroptosis is an autophagic cell death process. Cell Res, 26(9):1021-1032.
Goldhirsch, A., Winer, E. P., Coates, A. S., Gelber, R. D., Piccart-Gebhart, M., Thürlimann, B., et al. (2013). Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol, 24(9):2206-2223.
Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov, 12(12):931-947.
Győrffy, B. (2023). Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience. 2023 Jun;45(3):1889-1898.
Hahm, E. R., Lee, J., Abella, T., & Singh, S. V. (2019). Withaferin A inhibits expression of ataxia telangiectasia and Rad3-related kinase and enhances sensitivity of human breast cancer cells to cisplatin. Mol Carcinog, 58(11):2139-2148.
Hahm, E. R., Moura, M. B., Kelley, E. E., Van Houten, B., Shiva, S., & Singh, S. V. (2011). Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLOS ONE, 6(8):e23354.
Hangauer, M. J., Viswanathan, V. S., Ryan, M. J., Bole, D., Eaton, J. K., Matov, A., et al. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 551(7679):247-250.
Hao, Y., Baker, D., & Ten Dijke, P. (2019). TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci, 20(11):2767.
Harris, J. R. L., Marc E. ; Morrow, Monica ; Kent Osborne, C. (2014). Diseases of the breast (Fifth edition ed.): Wolters Kluwer Health Adis (ESP).
Hassannia, B., Logie, E., Vandenabeele, P., Vanden Berghe, T., & Vanden Berghe, W. (2020). Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol, 173:113602.
Hassannia, B., Wiernicki, B., Ingold, I., Qu, F., Van Herck, S., Tyurina, Y. Y., et al. (2018). Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest, 128(8):3341-3355.
Hua, X., Duan, F., Huang, J., Bi, X., Xia, W., Song, C., et al. (2021). A Novel Prognostic Model Based on the Serum Iron Level for Patients With Early-Stage Triple-Negative Breast Cancer. Front Cell Dev Biol, 9:777215.
Ji, X., Qian, J., Rahman, S. M. J., Siska, P. J., Zou, Y., Harris, B. K., et al. (2018). xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene, 37(36):5007-5019.
Jiang, H., Muir, R. K., Gonciarz, R. L., Olshen, A. B., Yeh, I., Hann, B. C., et al. (2022). Ferrous iron–activatable drug conjugate achieves potent MAPK blockade in KRAS-driven tumors. Journal of Experimental Medicine, 219(4):e20210739.
Kagan, V. E., Mao, G., Qu, F., Angeli, J. P. F., Doll, S., Croix, C. S., et al. (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 13(1):81-90.
Kamburov, A., Pentchev, K., Galicka, H., Wierling, C., Lehrach, H., & Herwig, R. (2011). ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res, 39(Database issue):D712-717.
Kitamura, H., & Motohashi, H. (2018). NRF2 addiction in cancer cells. Cancer Sci, 109(4):900-911.
Koppula, P., Zhuang, L., & Gan, B. (2021). Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 12(8):599-620.
Lee, J., Hahm, E. R., Marcus, A. I., & Singh, S. V. (2015). Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Mol Carcinog, 54(6):417-429.
Liedtke, C., Mazouni, C., Hess, K. R., André, F., Tordai, A., Mejia, J. A., et al. (2008). Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol, 26(8):1275-1281.
Mandal, P. K., Seiler, A., Perisic, T., Kölle, P., Banjac Canak, A., Förster, H., et al. (2010). System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem, 285(29), 22244-22253.
Martindale, J. L., & Holbrook, N. J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 192(1), 1-15.
Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050):518-524.
Nedeljković, M., & Damjanović, A. (2019). Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells, 8(9):957.
Pinnix, Z. K., Miller, L. D., Wang, W., D'Agostino, R., Jr., Kute, T., Willingham, M. C., et al. (2010). Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med, 2(43):43ra56.
Ranjan, P., Anathy, V., Burch, P. M., Weirather, K., Lambeth, J. D., & Heintz, N. H. (2006). Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal, 8(9-10):1447-1459.
Roh, J.-L., Kim, E. H., Jang, H., & Shin, D. (2017). Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biology, 11:254-262.
Sabtu, S. N., Sani, S. F. A., Looi, L. M., Chiew, S. F., Pathmanathan, D., Bradley, D. A., et al. (2021). Indication of high lipid content in epithelial-mesenchymal transitions of breast tissues. Sci Rep, 11(1):3250.
Shibata, M., & Hoque, M. O. (2019). Targeting Cancer Stem Cells: A Strategy for Effective Eradication of Cancer. Cancers (Basel), 11(5):732.
Shpyleva, S. I., Tryndyak, V. P., Kovalchuk, O., Starlard-Davenport, A., Chekhun, V. F., Beland, F. A., et al. (2011). Role of ferritin alterations in human breast cancer cells. Breast Cancer Res Treat, 126(1):63-71.
Stan, S. D., Hahm, E. R., Warin, R., & Singh, S. V. (2008). Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res, 68(18):7661-7669.
Stan, S. D., Zeng, Y., & Singh, S. V. (2008). Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutrition and cancer, 60 Suppl 1(Suppl 1):51-60.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43):15545-15550.
Sultana, T., Okla, M. K., Ahmed, M., Akhtar, N., Al-Hashimi, A., Abdelgawad, H., et al. (2021). Withaferin A: From Ancient Remedy to Potential Drug Candidate. Molecules, 26(24):7696.
Tang, D., Chen, X., Kang, R., & Kroemer, G. (2021). Ferroptosis: molecular mechanisms and health implications. Cell Res, 31(2):107-125.
Thaiparambil, J. T., Bender, L., Ganesh, T., Kline, E., Patel, P., Liu, Y., et al. (2011). Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer, 129(11):2744-2755.
Torti, S. V., Manz, D. H., Paul, B. T., Blanchette-Farra, N., & Torti, F. M. (2018). Iron and Cancer. Annual Review of Nutrition, 38(1), 97-125.
Torti, S. V., & Torti, F. M. (2013). Iron and cancer: more ore to be mined. Nature Reviews Cancer, 13(5):342-355.
Waks, A. G., & Winer, E. P. (2019). Breast Cancer Treatment: A Review. Jama, 321(3):288-300.
Wang, X. J., Sun, Z., Villeneuve, N. F., Zhang, S., Zhao, F., Li, Y., et al. (2008). Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis, 29(6):1235-1243.
Yang, M., Chen, P., Liu, J., Zhu, S., Kroemer, G., Klionsky, D. J., et al. (2019). Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv, 5(7):eaaw2238.
Yang, W. S., Kim, K. J., Gaschler, M. M., Patel, M., Shchepinov, M. S., & Stockwell, B. R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proceedings of the National Academy of Sciences, 113(34):E4966-E4975.
Yang, Wan S., SriRamaratnam, R., Welsch, Matthew E., Shimada, K., Skouta, R., Viswanathan, Vasanthi S., et al. (2014). Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156(1):317-331.
Yang, W. S., & Stockwell, B. R. (2008). Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & Biology, 15(3):234-245.