研究生: |
程本毅 Cheng Ben Yi |
---|---|
論文名稱: |
十七至十九環二醯胺化合物的合成及利用研究 Study of synthesis and make use of 17-to 19- membered macrocyclic diamides. |
指導教授: |
劉高家秀
Liu Gao, Jia-Xiu |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
中文關鍵詞: | 大環 、醯胺 |
英文關鍵詞: | crown, diamide |
論文種類: | 學術論文 |
相關次數: | 點閱:167 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以謝清白和呂志昇學長改良的大環醯胺合成法合成一系列十七至十九環含硫、氧或含氮的雙苯大環二醯胺化合物,利用萃取及傳輸實驗對過渡金屬鈀(II)、銅(II)、鎳(II)離子的錯合能力進行探討。
萃取實驗中含硫大環二醯胺化合物(2a,2b,2c,4b,4c)對鈀(II)金屬離子的萃取效果比對銅(II)和鎳(II)金屬離子的萃取效果好;含氧大環二醯胺化合物(1a,1b,1c)對鈀(II)金屬離子並沒有萃取效果,對銅(II)金屬離子的萃取效果比鎳(II)金屬離子的萃取效果好;含兩個氧原子和一個氮原子的大環二醯胺化合物(3a)對銅(II)金屬離子的萃取效果比對鈀(II)和鎳(II)金屬離子的萃取效果好。
由傳輸實驗結果來看,含硫大環二醯胺化合物(2a,2b,2c,4b,4c)傳輸實驗的接受層金屬離子濃度是鈀(II)金屬離子濃度高於銅(II)金屬離子濃度高於鎳(II)金屬離子濃度; 含氧大環二醯胺化合物(1a,1b,1c)對鈀(II)金屬離子並沒有傳輸效果,接受層金屬離子濃度是銅(II)金屬離子濃度高於鎳(II)金屬離子濃度; 含兩個氧原子和一個氮原子的大環二醯胺化合物(3a)接受層金屬離子濃度是銅(II)金屬離子濃度高於鈀(II)金屬離子濃度高於鎳(II)金屬離子濃度。
由實驗得知含硫的大環二醯胺化合物(2a,2b,2c,4b,4c)對過渡金屬鈀(II)的錯合能力比較好,含氧(1a,1b,1c)或含氮(3a)的大環二醯胺化合物則對銅(II)有較好的錯合能力。
為了知道配位子與鈀(II)離子錯合的平衡常數(K),因此利用紫外/可見光光譜法(UV/VIS)來偵測配位子與金屬離子錯合的平衡常數,但與銅(II)及鎳(II)離子的錯合因無新峰線產生而未測。
分別以十八和十九環含硫的雙苯大環二醯胺化合物用氯仿和正己烷為溶劑養出鈀(II)單晶,經X-ray繞射鑑定後,得到兩顆皆為橘紅色但配位子和鈀(II)比例分別為1:1(十八環)和1:2(十九環)的晶體,且由(UV/VIS) Job’s plot (連續變化法)可發現其圖形介於1:1和1:2之間,因此認為1:1和1:2兩種錯合形式是在溶液中同時存在的。
Nine 17-to 19-membered macrocyclic diamides containing sulfur, oxygen and nitrogen as other coordinating site were synthesized by methods developed earily in our laboratory. They were used to study the ability of complexation with palladium(II), copper(II) and nickel(II) ion using techniques such as solvent extraction and liquid membrane transport.
In solvent extraction experiment, macrocyclic diamides containing sulfur have better ability of extraction with palladium(II) ion than copper(II) and nickel(II) ion. Macrocyclic diamides containing oxygen have better ability of extraction with copper(II) than nickel(II) and palladium(II) ion. Macrocyclic diamides containing oxygen and nitrogen have better ability of extraction with copper(II) than palladium(II) and nickel(II) ion.
In liquid membrane transport experiment, macrocyclic diamides containing sulfur have higher concentration in accepted layer with palladium(II) ion than copper(II) and nickel(II) ion. Macrocyclic diamides containing oxygen have higher concentration in accepted layer with copper(II) than nickel(II) and palladium(II) ion. Macrocyclic diamides containing oxygen and nitrogen have higher concentration in accepted layer with copper(II) than palladium(II) and nickel(II) ion.
Results show that macrocyclic diamides containing sulfur as other donor ligands have the best ability of complexation with palladium(II) ion, while macrocyclic diamides containing nitrogen and oxygen donor complexed better with copper(II) ion.
T he equilibrium constants(K) with Pd(II) ion were determined using mole-ratio method of UV/Vis spectrometry.
Two kinds of red-orange single crystal of the Pd(II)-macrocyclic diamide complexs containing sulfur in 18-and 19-membered rings were isolated and was analyzed by single crystal X-ray diffractions.The 18-membered ring is 1:1 [ligand : Pd(II)], while the 19-membered ring is 1:2 [ligand : Pd(II)]. The continuous variation method(UV/Vis) also showed that both one to one and one to two complexes with Pd(II) were co-existed in methanolic solutions.
1.Melson,G. A. Ed. “Coordination Chemistry of Macrocyclic Compounds”, Plecum, New York, 1979.
2. R. M. Izatt, & Christensen, J. J. Ed. “Process in Macrocyclic Chemistry”, J. Wiley & Sons, New York, 1979.
3. C. J. Pederson, J. Am. Chem. Soc. 1967, 89, 2495.
4.C. J. Pederson, J. Am. Chem. Soc. 1967, 89, 707.
5. C. J. M. van V Frank, Willem, V. & David, N. R. Chem. Rev. 1994, 94, 279.
6. Tsukube, H. Inoue, T. & Hori, K. J. Org. Chem. 1994, 59, 8047.
7. M. Vincenti, J. Mass Spectrom. 1995, 30, 925.
8.Krakowiak, K. E. Bradshaw, J. S. Zamecka & Krakowia,D.
J. Chem. Soc. Rev. 1989, 89, 929.
9. Dietrich, B. Lehn, J. M. Sawage, J. P. & Blanzat, J. Tetrahedron, 1973, 29, 1629.
10. Dietrich, B. Sawage, J. P. Tetrahedron Letters. 1969, 2885
11.Kimura, E. Kurogi, Y. Tojo, T. Shionoya, M. & Shiro, M. J. Am. Chem. Soc. 1991. 113,4857.
12.Barstow, L. E. & Hruby, U. J. J. Org. Chem. 1971, 36,1350.
13.Stock, G. & Morgans, D. J. J. Am. Chem. Soc. 1979, 101,7110.
14.Liu, L. K. Hsidh, T.P. & Kuo, S. M. Synthesis, 1994, 309.
15.Weber, E. Toner, J. L. Laidler, C. A. Stoddart, J. F. & Barsch, R. A. Ed. ”Crown Ether and Analogs”, Wiley & Sone, New, York, 1989.
16.Pederson, C. J. J. Am. Chem. Soc. 1970, 92, 386.
17.Frensdorff, H. K. J. Am. Chem. Soc. 1971, 93, 600
18.Izatt, R. M. Eatough, D. J. & Christensen, J. J. Chem. Rev. 1974, 74, 351.
19.Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 433.
20. Irving, H. & Williams, P. J. R. J.Chem. Soc. 1953, 3192.
21.Walkowiak, W. Nidp, G. & Bartsch, A. Anal. Chem. 1999, 71, 1021.
22.Bond, A. H. Chiarizia, R. Huber, V. J. & Dietz, M. L. Anal. Chem. 1999, 71, 2757.
23.Yost, T. L. Fagan, B. C. Allain, L. R. Barnes, C. E. Dai, S. Sepaniak, M. J. & Xue, Z. Anal. Chem. 2000, 72,5516.
24.Nakatsuji, Y. Kita, K. Inoue, H. Zhang, W. Kida T. & Ikeda, I. J. Am. Chem. Soc. 2000,122,6307.
25. Kimura, E. Pure & Appl. Chem. 1989, 61, 823.
26.Bossu, F. P. Chellappa. K.L. & Margerum, D. W. J. Am. Chem. Soc. Chem. 1977, 99, 2195.
27.Murray, S. G. & Hartley, F. R. Chem. Rev. 1981, 81, 365.
28.Kimura, E. Dalimunte, C. A. Yamashita, A. & Machida, R. J. Chem. Soc Chem. Commun. 1985, 1041.
29. Kimura, E. Kuroogi, Y. Wada, S. & Shionoya, M. J. Chem. Soc. Commun. 1989, 781.
30. Kimura, E. Tetrahedron, 1992, 48, 6175.
31. Kimura, E. Kuroogi, Y. Wada, S. & Shionoya, M. J. Chem. Soc. Chem. Commun. 1988, 1166.
32. Nakatsuji, Y. Muraoka, M. Kida T. & Ikeda, I. J. Org. Chem.1997,62,6231.
33.Sivelli, S. Gazzola, L. Casnati, A. & UnGaro. R. J. Am. Chem. Soc.1999,121,10142.
34.Donald T. S. & William R. H. “Chemistry Experiment for Instrumental Methods”,J. Wiley & Sons, New York, 1984.
35.Burkhard, K. & Mario, P. J. Am. Chem. Soc. 1999, 121, 1681.
36.Yasuo, T. & Yasuo, O. J. Org. Chem. 1994, 59,2967.
37.Yasuak, K. & Yasushi, K. J. Am. Chem. Soc. 1991,113,1349.
38.Buschmann, H. J. Inorg. Chim. Acta, 1992, 195, 51.
39.呂志昇, 國立台灣師範大學化學研究所論文,1996.
40.陳恆毅, 國立台灣師範大學化學研究所論文,2000.