簡易檢索 / 詳目顯示

研究生: 周祐民
CHOU, YU-MIN
論文名稱: 鄂霍次克海岩心MD012414之磁學研究—180萬年來東北亞古氣候及古環境變遷
Magnetic Study of Core MD012414 from Okhotsk Sea — Paleoclimate and Paleoenvironment Changes of Northeastern Asia Since 1.8 Ma
指導教授: 李德貴
Lee, Teh-Quei
陳光榮
Chen, Kuang-Jung
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 81
中文關鍵詞: 鄂霍次克磁學古地磁冰期間冰期極性異常松山反向世代布倫正向世代
英文關鍵詞: okhotsk, magnetic, paleomagnetic, glacial periods, interglacial periods, Excursion, Matuyama epochs, Brunches epochs
論文種類: 學術論文
相關次數: 點閱:240下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對2001年IMAGE VII航次採自鄂霍次克海中部Deyugin Basin中心編號MD012414海洋岩心進行古地磁及磁學參數分析,岩心點址經緯度為(149°34.80’E, 53°11.77’N),水深1123公尺。
    古地磁學研究分析岩心中沈積物之自然殘磁方向及強度,主要目的為建立該岩心之古地磁地層及古地磁場長期變化型態,提供岩心對比及年代控制機制。而磁學性質之研究則包含磁感率、逆磁滯殘磁及等溫殘磁等,這些磁學參數主要探討沈積物中磁性礦物種類、粒度及含量變化,進而探討研究地點古環境、古氣候變遷模式。
    自然殘磁之結果分析指出本岩心總長度53.88公尺涵蓋了松山(Mayuyama)反向世代上半部與布倫(Brunhes)正向世代,可提供本研究區域近180萬年來更新世 (Pleistocene) 相當完整的資料。記錄中出現多次地磁場反轉紀錄,分別為Upper Olduvai Event、Cobb Mountain Event Jaramillo Event、及Mayuyama – Brunhes Boundary,其年代各為177萬年、124~121萬年、107~99萬年、及78萬年前。由年代模式,計算沈積物平均沈積速率約3 cm/kyr。記錄中亦出現多次古地磁場極性異常事件(Excursion)。
    磁感率隨深度變化結果與沈積物顆粒大小及氧同位素分析初步結果相比較(李孟陽等,未發表資料),我們發現磁感率高值區出現在粗顆粒百分比高之沈積物區,同為冰期時之產物,由於磁感率高低反應磁性礦物含量相對之多寡,因此推論冰期時磁性礦物含量較高,而間冰期時則下降。樣品所得逆磁滯殘磁除以磁感率之結果,可去掉磁性礦物量變化影響,明顯反映出磁性礦物粒度大小變化,本岩心分析之結果顯示磁性礦物之粒度與一般沈積物顆粒粒度之變化相當一致,顯現冰期時沈積物中磁性礦物顆粒粒度較粗,間冰期時磁性礦物顆粒較細的特性。從這些結果與前人之研究,我們認為冰期時鄂霍次克海沈積物可能主要來自東邊的勘察加半島(Kamchatka Peninsula)火山地區,由冰川刮蝕帶來之沈積物中具有含量較高顆粒較粗之磁性礦物,而在間冰期時,則可能由周遭帶來較多海洋及陸源沈積物,其中磁性礦物較少顆粒較細。
    等溫殘磁測量結果中,出現多處加磁變化異常區域,當弱磁場(50~75 mT)加磁時等溫殘磁值下降,加磁至強磁場時才增加,此現象有可能是磁學特性特殊之礦物,如菱鐵礦(Siderite, FeCO3)所造成。由等溫殘磁所得結果與S-ratio及剛性等溫殘磁結果指出,沈積物中主要磁性礦物為磁鐵礦;排除等溫殘磁加磁變化異常區域,我們在岩心深度9.20~14.98公尺、39.06~39.76公尺及40.67~41.88公尺處發現具有較高含量的赤鐵礦或褐鐵礦,初步推論這些磁性礦物的來源可能與風積物有關。其可能機制為:風成黃土在乾冷的冰期形成,當蒙古及西伯利亞地區高壓產生時,吹起近地表強烈乾冷的風,將泥沙從黃土高原吹送上平流層,經由西風吹送,最後落入鄂霍次克海及附近區域沈積。
    本岩心中也發現數層火山灰,其中3.35公尺處之火山灰層應相當於Gorbarenko(2002)報導之K2火山灰層,可能為在26 ka時位於Onecotan島之火山Nemo – III 所噴發。

    This study presents the magnetic results of core MD012414 taken from Deyugin Basin in the middle part of the Okhotsk Sea during IMAGES VII cruise in 2001. The locality of the coring site is 149°34.80’E in longitude and 53°11.77’N in latitude, and the water depth is about 1123 m. The total recovered length of this core is 53.88 m.
    Paleomagnetic results indicate that the boundary of Brunches and Matuyama epochs appeared at the depth of 28.77 m having the age of 0.78 Ma. Also the Jaramillo event, the Cobb Mountain event and the upper limit of the Olduvai event could be recognized at the depths between 35.8 m and 38.1 m, between 41.76 m and 42.15 m, and 53.8 m. The age intervals of these events are 0.99~1.07 Ma, 1.21~1.24 Ma, and 1.77 Ma, respectively. The average sedimentation rate is estimated to be about 3 cm/kyr. In addition, several events and excursions both in the Brunhes and Matuyama epochs could be identified.
    Results of magnetic susceptibility (c) point out that high values are usually observed at the glacial periods and low values at the interglacial periods. In consideration of the environment of the site studied, it is proposed that much more magnetic minerals were brought from the Kamchatka peninsula located at the east into the coring site during the glacial times by ice river, and more terrigenous sediments with less magnetic mineral content came from the Asia continent during the interglacial times.
    The acquisition pattern of the IRM shows that most samples acquired saturated IRM before 300 mT treatment, which reveals that magnetite is the major magnetic mineral contained in most of the samples. However, significant amount of hematite and goethite could be found in there parts, such as the depths of about 9.20~14.98 m、39.06~39.76 m and 40.67~41.88 m. These data might support the evidence of existing the deposition of Aeolian dust in Okhotsk Sea at those periods. In addition, several short portions of the core studied show an abnormal acquisition pattern of IRM: dramatically intensity drops down occurred at relative low applied fields (of about 50-75 mT), then slightly increases at different high level, but never reached the saturation. This phenomenon might suggest the existence of siderite or other magnetic minerals at these parts.
    Besides, the parameters ARM/c and SIRM/c all show that low values appear at the glacial time and high values at the interglacial time. Generally, low value represents the dominance of coarse magnetic grain in the sample. Thus, it could be concluded that coarse grain magnetic mineral deposited during glacial time and relative fine grain magnetic mineral deposited during interglacial time. This is consistent with the observation of the distribution of the coarse-grained fraction in the samples made by Lee (unpublished data).
    Some ash layers were found in this core. One of them appeared at the depth of 3.35 m could be correlated to the K2 ash layer reported by Gorbarenko (2002) due to the eruption of the Nemo – III volcano of the Onecotan island in 26 ka.

    誌謝……………………………………………………………I 中文摘要………………………………………………………II 英文摘要………………………………………………………IV 目錄……………………………………………………………VI 圖目錄…………………………………………………………VIII 表目錄…………………………………………………………IX 一、 緒論………………………………………………………1 1.1研究緣起………………………………………………1 1.2研究區域………………………………………………4 1.3前人研究………………………………………………7 二、 研究材料與分析方法…………………………………12 2.1研究材料與採樣……………………………………12 2.2分析原理與方法……………………………………12 2.2.1磁感率之量測……………………………………12 2.2.2自然殘磁之量測…………………………………15 2.2.3逆磁滯殘磁之量測………………………………16 2.2.4等溫殘磁之量測…………………………………17 三、 古地磁學結果…………………………………………20 3.1殘磁穩定度…………………………………………20 3.2古地磁場長期變化…………………………………23 3.2.1古地磁場方向……………………………………23 3.2.2古地磁場相對強度模擬…………………………26 3.3年代模式……………………………………………29 四、磁學參數結果……………………………………………33 4.1磁感率………………………………………………33 4.2等溫殘磁……………………………………………33 4.3逆磁滯殘磁…………………………………………46 五、討論………………………………………………………56 5.1岩心點址古地磁場長期變化………………………56 5.2極性異常事件………………………………………58 5.3岩心中磁性礦物之特徵……………………………61 5.4鄂霍次克海之古環境變遷…………………………63 5.5風積物之證據………………………………………64 5.6火山活動之證據……………………………………68 六、結論與未來展望…………………………………………71 6.1結論…………………………………………………71 6.2未來展望……………………………………………73 七、參考文獻…………………………………………………74 圖目錄 圖1-1 IMAGE VII航次岩心採樣點址圖…………………2 圖1-2 鄂霍次克海地理位置圖……………………………5 圖1-3 鄂霍次克海海域受季節變化海冰圖………………6 圖1-4 鄂霍次克海與太平洋海水交換圖…………………8 圖1-5 鄂霍次克海18 ka來海冰範圍變化圖……………10 圖2-1 岩心MD012414之組成描述圖……………………13 圖2-2 U-Channel採樣圖…………………………………14 圖2-3 磁域壁示意圖………………………………………18 圖3-1 岩心代表性樣本去磁翟氏分量圖與去磁強度變化趨 勢圖………………………………………………21 圖3-2 自然殘磁向量變化示意圖…………………………22 圖3-3 古地磁場隨深度變化圖……………………………24 圖3-4 粗顆粒沈積物百分比初步結果……………………25 圖3-5 地磁場反轉介面地磁場強度變化圖………………27 圖3-6 古地磁場強度變化的特徵對比圖…………………28 圖3-7 本岩心年代模式圖…………………………………30 圖3-8 古地磁場傾角及偏角長時間變化圖與磁地層……32 圖4-1 磁感率隨深度變化圖………………………………34 圖4-2 磁感率隨年代變化圖………………………………35 圖4-3 Pillans(1991)發表之紐西蘭第四紀地層記錄圖…36 圖4-4 逐步加磁過程中等溫殘磁隨深度變化圖…………38 圖4-5 等溫殘磁加磁變化異常區域代表樣品等溫殘磁加磁 結果………………………………………………39 圖4-6 逐步加磁過程所測得之等溫殘磁隨年代變化圖…40 圖4-7 加磁300 mT與950 mT時等溫殘磁隨深度變化.42 圖4-8 飽和等溫殘磁隨時間變化圖………………………43 圖4-9 S-ratio隨深度變化圖………………………………44 圖4-10 S-ratio隨年代變化圖……………………………45 圖4-11 剛性等溫殘磁隨深度變化圖……………………47 圖4-12 剛性等溫殘磁隨年代變化圖……………………48 圖4-13 逆磁滯殘磁隨深度變化圖………………………49 圖4-14 逆磁滯殘磁隨年代變化圖………………………50 圖4-15 磁性礦物顆粒大小分佈圖………………………52 圖4-16 逆磁滯殘磁對磁感率之比值隨深度變化圖……53 圖4-17 逆磁滯殘磁與磁感率之比值隨年代變化圖……54 圖4-18 磁性礦物顆粒大小隨深度變化圖………………55 圖5-1 地磁場長期變化範圍示意圖………………………57 圖5-2 不同磁鐵礦顆粒大小範圍樣品之去磁曲線圖……65 圖5-3 勘察加半島由西向東觀看之3D地形圖…………65 圖5-4 Gorbarenko報導之鄂霍次克海磁感率隨深度變化 圖…………………………………………………66 圖5-5 剛性等溫殘磁與磁感率比較圖……………………69 圖5-6 風成黃土搬運機制圖………………………………70 圖5-7 Gorbarenko報導之火山活動火山灰影響區域…..70 表目錄 表3-1 本研究比對之年代控制點深度位置………………29 表3-2 本岩心分段沈積速率變化…………………………31 表4-1 各加磁異常區域深度及其對應年代………………37 表5-1 本岩心極性異常事件………………………………61

    Alfultis, Michael A. and Martin, Seelye (1987)., Satellite Passive Microwave Studies of the Sea of Okhotsk Ice Cover and its Relation to Oceanic Processes, 1978-1982., Journal of Geophysical Research, 92, 13013-13028.
    Baranov, B., et al. (1997)., RV Akademik M. A. Lavrentyev cruise 27 cruise report, GREGORY ; German Russian expedition for geological/geophysical Okhotsk Sea research., GEOMAR-Report, 60, 18-53.
    Barash,M. S., Bubenshchikove, N., (2001), Influence of the quaternary climatic fluctuations on the structure of the upper water layer of the okhotsk sea., Abstracts of the 7th International Conference on Paleoceanography, p.79.
    Berggren, W. A., Hilgen, F. J., Langereis, C. G., Kent, D. V., Obradovich, J. D., Raffi, Isabella., Raymo, M. E., Shackleton, N. J. (1995), Late Neogene chronology: New perspectives in high-resulution stratigraphy., Geological Society of America Bulletin, 107, 1272-1287.
    Biebow, N., Tiedemann, R., (2001), The sea of Okhotsk – Stratigraphy and general pattern of sediment deposition – results of joint german-russian project komex., Abstracts of the 7th International Conference on Paleoceanography, p.193.
    Channell, J. E. T., Hodell, D.A., Lehman, B. (1997), Relative geomagnetic paleointensity and £_18O at ODP Site 983 (Grardar Drift, North Atlantic) since 350 ka., Earth and Planetary Science Letters, 153, 103-118.
    Channell, J. E. T. (1999), Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) Site 984 (Bjorn Drift) since 500 ka: Comparisons with ODP Site 983 (Gardar Drift)., Journal of Geophysical Research, 104, 22937-22951.
    Channell, J. E. T. Mazaud, A. Sullivan, P. Turner, S. and Raymo, M. E. (2002), Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin)., Journal of Geophysical Research, 107, 1-14.
    Freeland, H. J. Bychkov, A. S. Whitney, F. Taylor, C. Wong, C. S. and Yurasov, G. I. (1998), WOCE section P1W in the Sea of Okhotsk 1.Oceanographic data descriotion., Journal of Geophysical Research, 103, 15613-15623.
    Gillingham, David E. W. and Stacey, Frank D. (1971), Anhysteretic Remanent Magnetization (ARM) in Magnetite Grains., Pageoph, 91, 160-165.
    Gorbarenko, S. A. (1991), The Stratigraphy of the Upper Quaternary Sediments in the Central Part of the Okhotsk and its Paleceanology According to Data Obtained by the δ18O and other Methods., Oceanology, 31, 761-766.
    Gorbarenko, Sergei A. (1996), Stable Isotope and Lithologic Evidence of Late-Glacial and Holocene Oceanography of the Northwestern Pacific and its Marginal Seas., Quaternary Research, 46, 230-250.
    Gorbarenko, S. A. Chekhovskaya, M. P. and Souhton, J. R. (1998), On the Paleoenvironment of the Central Parts of the Sea of Okhotsk during the Past Holocene Glaciation., Marine Geology, 38, 305-308.
    Gorbarenko, S. A. Nurnberg, D. A. Derkachev, N. Astakhov, A. S. Southon, J. R. Kaiser, A. (2002), Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply., Marine Geology, 183, 107-129.
    Guyodo, Yohan & Valet, Jean-Pierre (1999), Global changes in intensity of the Earth`s magnetic field during the past 800 kyr., Nature, 399, 249-252.
    Guyodo, Yohan (1999), Paleointensity record from Pleistocene sediments (1.4 Ma) off the California Margin., Journal of Geophysical Research, 104, 22953-22964.
    Guyodo, Yohan Gaillot, Philippe Channell, J. E. T. (2000), Wavelet analysis of relative geomagnetic paleointensity at ODP Site 983., Earth and Planetary Science Letters, 184, 109-123.
    Housen, B. A. Banerjee, S.K. and Moskowitz, B.M. (1996), Low-temperature magnetic properties of siderite and magnetite in marine sediments., Geophysical Research Letters, 23, 2843-2846.
    Hovan, Steven A. Rea, David K. Pisias, Nicklas G. & Shackleton, Nicholas J. (1989), Adirect link between the China loess and marine δ18O records: aeolian flux to the north Pacific., Nature, 340, 296-298.
    Ikehara, M., Kawamura, K., (2001), Millennial scale osillations of sea surface salinity in the sea of okhotsk during the last Quaternary., Abstracts of the 7th International Conference on Paleoceanography, p.122.
    Kawamura, K., Seki, O., Ikehara, M., (2001), Biomaker study for climatic and oceangraphic variations in the sea of okhotsk over the last 27,000 years., Abstracts of the 7th International Conference on Paleoceanography, p.130.
    Keigwin, Lloyd D. (1998), Glacial-age hydrography of the far northwest Pacific Ocean., Paleoceanography, 13, 323-339.
    King, John Banerjee, Subir K. Marvin, James and Ozdemir, Ozden (1982), A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments., Earth and Planetary Science Letters. 59, 404-419.
    Kukla, George and An, Zhisheng (1989), Loess Stratigraphy in Central China., Palaeogeography, Palaeoclimatology, Palaeoecology,, 72, 203-225.
    Masher, BarBara A. (1988), Magnetic properties of some synthetic sub-micron magnetites., Geophysical Journal, 94, 83-96.
    Nowaczyk, Norbert R. and Knies, Jochen (2000), Magnetostratigraphic results from the eastern Arctic Ocean: AMS14C ages and relative palaeointensity data of the Mono Lake and Laschamp geomagnetic reversal excursions., Geophys. J. Int., 140, 185-197.
    Okazaki, Y., Takahashi, K., Yoshitani, H., (2001), Last 125 KYRs paleoceangraphic change in the okhotsk sea from radiolarian records., Abstracts of the 7th International Conference on Paleoceanography, p.167.
    Ohnishu, k., Nakatsuka, T., (2001), Glacial-Interglacial variations in the denitrification on the continetal shelf of the sea of okhotsk as recorded by N-15 in sediment cores., Abstracts of the 7th International Conference on Paleoceanography, p.166.
    Peck, J.A. King, J.W. Colman, S.M. Kravchinsky, V.A. (1994), A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change., Earth and Planetary Science Letters, 122, 221-238.
    Pillans, Brad (1991), New Zealand Quaternary Stratigraphy: An Overview., Quaternary Science Review, 10, 405-418.
    Pye, K. and Zhou, Li-Ping (1989), Late Pleistocene and Holocene Aeolian Dust Deposition in North China and The Northwest Pacific Ocean., Palaeogeography, Palaeoclimatology, Palaeoecology, 73, 11-23.
    Rea, Thomas R. Janecek and David K. (1985), Quaternary Fluctuations in the Northern Heisphere Trade Winds and Westerlies., Quaternary Research, 24, 150-163.
    Rea, David K. Leinen, Margaret Janecek, Thomas R. (1985), Geologic Approach to the Long-Term historyof Atmospheric Circulation., Science, 227, 721-725.
    Rea, David K. and Leinen, Margaret (1988), Asian aridity and the zonal westerlies: Late Pleistocene and Holocene record of Eolian Deposition in the Northwest Pacific Ocean., Palaeogeography, Palaeoclimatology, Palaeoecology, 66, 1-8.
    Rea, S. A. Hovan and D. K. (1991), Late Pleistocene continental climate and oceanic variability recorded in Northwest Pacific sediments., Paleoceanography, 3, 349-370.
    Roberts, Andrew P., Lehman, Benoit Weeks, Robin J., Verosub, Keeneth L., Laj, Carlo (1997), Relative paleointensity of the geomagnetic field over the last 200,000 years from ODP Sites 883 and 884, North Pacific Ocean., Earth Planetary Science Letters, 152, 11-23.
    Robinson, Simon G. (1986), The late Pleistocene palaeoclimatatic record of North Atlantic deep-sea sediments reveraled by mineral-magnetic measurements., Physics of the Earth and Planetary Interiors, 42, 22-47.
    Rochette, Pierre Fillon, Gerard Mattei, Jean-Luc and Dekkers, Marinus J. (1990), Magnetic tranition at 30-34 Kelvin in pyrrhotite: insight into a widespread occurence of this mineral in rocks., Earth and Planetary Science Letters, 98, 319-328.
    Sakaguchi, Yutaka Okumura, Koji (1986), Interglacial climates and relic Red soils in northern Japan based on pollen records of interglacial deposits in eastern Hokkaido., Bulletin of the Department of Geography, University of Tokyo, 18, 29-48.
    Sakamoto, T., Tanabe, T. And Shimizu, H., (2001), Millenium-scale rapid and intensive cooling events and sea ice history in the Okhotsk Sea., Abstracts of the 7th International Conference on Paleoceanography, p.178.
    Shiga, Kenji Koizumi, Itaru (2000), Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records., Marine Micropaleontology, 38, 91-117.
    Shiga, K., Koizumi, I., Ikehara, M., (2001), Changes of the diatom assemblage and marine surface environment in the okhotsk sea during the last 125,000 years., Abstracts of the 7th International Conference on Paleoceanography, p.186.
    Singer, Bradley S., Hoffman, Kenneth A., Chauvin, Annick, Coe, Robert S. and Pringle, Malcolm S., (1999), Dating transitionally magnetized lavas of the late Matuyama Chron: Toward a new 4-Ar/39Ar timescale of reversals and events., Journal of Geophysical research, 104, 679-693.
    Shimada, C., Hasegawa, S., (2001), Paleoceanographic implications of a 90,000 year long diatom record in piston core KH94-3, LM-8 off NE Japan., Marine Micropaleontology, 41, 153-166.
    Valet, Jean-Pierre and Meynadier, Laure (1993), Geomagnetic field intensity and reversals during the past four million years., Nature, 366, 234-238.
    Watanabe, Tatsure and Wakatsuchi, Masaaki (1998), Formation of 26.8-26.9 δθ water in Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water., Journal of Geophysical Research, 103, 2849-2865.
    Wei, Wuchang (1995), Revised age calibration points for the geomagnetic polarity time scale., Geophysical Research Letters, 22, 957-960.
    Worm, Horst-Ulrich (1997), A link between geomagnetic reversals and events and glaciations., Earth and Planetary Science Letters, 147, 55-67.
    Yamamoto, Hirohiko (1983), Geological framework and sedimentary process in southwestern margin of the Okhotsk Sea, Chishitsugaku Zasshi = Journal of the Geological Society of Japan, 89, 15-29.
    Yamazaki, Toshitsugu (1999), Relative paleointensity of the geomagnetic field during Brunhes Chron recorded in North Pacific deep-sea sediment cores: orbital influence., Earth and Planetary Science Letters, 169, 23-35.
    Yu, Lizhong and Oldfield, Frank (1988), A Multivariate Mixing Model for Identifying Sediment Source from Magnetic Measurements., Quaternary Research, 32, 168-181.

    QR CODE