簡易檢索 / 詳目顯示

研究生: 蔡君偉
Chun-Wei Tsai
論文名稱: 32×32光學能隙型波長交換器之研究
Study of 32×32 Photonic Bandgap Wavelength Switch
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 265
中文關鍵詞: 光子晶體光學能隙共振型濾波器大直角轉折波長交換器光波導多模干涉絕緣層上矽晶
英文關鍵詞: photonic crystal, photonic bandgap (PBG), resonant filter, sharp bend, wavelength switch, waveguide, multimode interference (MMI), silicon on insulator (SOI)
論文種類: 學術論文
相關次數: 點閱:362下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出利用絕緣層上矽晶並結合一維光學能隙共振型濾波器及二維光學能隙大角度轉折波導所組成之32×32光學能隙型波長交換器。在一維光學能隙共振型濾波器,我們利用一維光子晶體週期性結構及λ/4的相位移技術設計出高傳送功率、低插入損失及高品質因素的共振型濾波器。在二維光學能隙大角度轉折波導,我們利用二維光子晶體週期性結構及線狀缺陷的技術並針對不同的能隙結構來控制光在波導中行進的路徑,以便達到縮小積體光學元件之體積。
在32×32光學能隙型波長交換器,我們著重提出一有效的路由自動交換方式並結合光學能隙晶格及多模干涉區所組成之光學能隙型波長交換器,我們在多模干涉區上側摻雜如同光學能隙晶格型之週期排列的硼和磷離子,再利用電壓調變多模干涉區中光學能隙晶格型之雜質的濃度變化,利用雜質的變化來改變折射率,藉此從波導中取出特定信號,以達到可控制特定波長信號的路由路徑。接著,我們將此可調式32×32光學能隙型波長交換器應用於高密度分波多工的傳輸網路系統中,如此可達到充分利用有限的波長資源的目的。

In this thesis, we design a 32×32 photonic bandgap (PBG) wavelength switch which combines one-dimensional (1-D) resonant PBG filter waveguide and two-dimensional (2-D) PBG sharp bend waveguide based on silicon-on-insulator (SOI) wafer. In 1-D resonant PBG filter waveguide, we use the technique of PBG and phase shift to design a high transmittance, lower insertion loss and high quality factor resonant PBG filter waveguide. In 2-D PBG sharp bend waveguide, we use the technique of photonic bandgap and line defect to control the direction of the light wave propagation in a waveguide.
In 32×32 PBG wavelength switch, we focus on the new technology of router. The 32×32 PBG wavelength switch which combines PBG structure and multimode interference (MMI) structure. The boron and phosphorus ions are assumed doping on the upper layer of PBG structure and adding voltage to change the carrier concentration distribution. By changing carrier concentration distribution, the index can be changed. We can switch the specific wavelength form the output port of waveguide. We could apply such a device into optical network using finite wavelength channel numbers.

Contents Chinese Abstract...........................................i English Abstract..........................................ii Acknowledgment...........................................iii Contents..................................................iv List of Figures.........................................viii List of Tables...........................................xxv Chapter 1 Introduction.....................................1 Chapter 2 Design and Analysis of Integrated Optical One- Dimensional Resonant Photonic Bandgap Filter Based on SOI Waveguide................................19 2-1 Introduction of the Technique of Silicon-on-Insulator Waveguide and One-Dimensional Microcavity.............20 2-2 Mathematical Formulation of Beam Propagation Method, Bragg Grating Phase Shift Grating and One-Dimensional Microcavity Structure.................................21 2-2-1 Mathematical Formulation of Beam Propagation Method...........................................22 2-2-1-1 Forward Beam Propagation Method............22 2-2-1-2 Bidirectional Beam Propagation Method......24 2-2-2 One-Dimensional Resonant Photonic Bandgap Filter Based on SOI Waveguide...........................26 2-2-2-1 Transmission and Reflection Characteristics in Bragg Grating Structure.................26 2-2-2-2 Phase-Shift Grating and Microcavity........28 2-3 Design and Analysis of Integrated Optical One- Dimensional Resonant Photonic Bandgap Filter Based on SOI Waveguide.........................................31 2-3-1 Free-Carrier Plasma Dispersion Effect............32 2-3-2 Design and Analysis of Optical One-Dimensional Resonant Photonic Bandgap Filter Waveguide.......33 2-3-2-1 Single Mode SOI Rib Waveguide..............34 2-3-2-2 Design and Analysis of One-Dimensional Resonant Rectangular Holes Photonic Bandgap Filter Waveguide...........................35 2-3-2-3 Design and Analysis of One-Dimensional Resonant Square Holes Photonic Bandgap Filter Waveguide..................................41 2-3-2-4 Design and Analysis of One-Dimensional Resonant Triangular Holes Photonic Bandgap Filter Waveguide...........................47 2-3-2-5 Design and Analysis of One-Dimensional Resonant Circular Holes Photonic Bandgap Filter Waveguide...........................51 2-3-2-6 Design and Analysis of One-Dimensional Resonant Hexagonal Holes Photonic Bandgap Filter Waveguide...........................56 2-4 Discussions and Conclusions...........................61 Chapter 3 Design and Analysis of Integrated Optical Two- Dimensional Photonic Bandgap Sharp Bend Waveguide Based on SOI Waveguide..........................89 3-1 Introduction of the Photonic Crystal and Two-Dimensional Photonic Bandgap Sharp Bend Waveguide.................90 3-2 Mathematical Formulation of Finite Difference Time Domain Method and Two-Dimensional Photonic Bandgap Structure.............................................91 3-2-1 Mathematical Formulation of Finite Difference Time Domain Method....................................92 3-2-2 Mathematical Formulation of Two-Dimensional Photonic Bandgap Structure.......................95 3-2-3 Mathematical Formulation of Two-Dimensional Photonic Bandgap Line-Defect Structure...........96 3-3 Design and Analysis of Integrated Optical Two- Dimensional Photonic Bandgap Sharp Bend Waveguide Based on SOI Waveguide......................................98 3-3-1 Design and Analysis of Two-Dimensional SOI Photonic Bandgap Sharp Bend Waveguide with A Square Lattice of Circular Air Columns..........................99 3-3-2 Design and Analysis of Two-Dimensional SOI Photonic Bandgap Sharp Bend Waveguide With A Square Lattice of Square Air Columns...........................108 3-3-3 Design and Analysis of Two-Dimensional SOI Photonic Bandgap Sharp Bend Waveguide with A Square Lattice of Hexagonal Air Columns........................117 3-4 Discussions and Conclusions..........................126 Chapter 4 Design and Analysis of Integrated 32×32 Photonic Bandgap Wavelength Switch Based on SOI Wavguide ...............................................162 4-1 Introduction of Multi-Mode Interference Structure and Wavelength Switch Device.............................162 4-2 Mathematical Formulation of Multi-Mode Interference..164 4-3 Design and Analysis of Integrated 32×32 Photonic Bandgap Wavelength Switch Based on SOI Waveguide.............166 4-3-1 Design and Analysis of Integrated 32×32 Photonic Bandgap Wavelength Switch with A Novel SOI Schottky Electro-Optical Modulator Based on MMI and SOI Structure.......................................167 4-3-2 Design and Analysis of Integrated 32×32 Photonic Bandgap Wavelength Switch with the Refractive Index Change –1.6×10-2...............................170 4-3-3 Design and Analysis of Integrated 32×32 Photonic Bandgap Wavelength Switch with the Refractive Index Change –4.0×10-3...............................183 4-4 Integration of One-Dimensional Resonant Photonic Bandgap Filter and Two-Dimensional Photonic Bandgap Sharp Bend Waveguide on 32×32 Photonic Bandgap Wavelength Switch .....................................................198 4-5 Discussion and Conclusions...........................202 Chapter 5 Conclusions....................................233 Reference................................................237 Publication Lists......................................xxvii

[1] Kevin H. Liu, Brian J. Wilson, and John Y.Wei, “A scheduling application for WDM optical networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 2041–2050, 2000.
[2] Keyao Zhu and Biswanath Mukherjee, “Traffic grooming in an optical WDM mesh network,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 1, pp. 122–133, 2002.
[3] Adrian J. Keating and Arthur James Lowery, “Wavelength stabilization in packet-switched WDM networks,” IEEE Journal of Lightwave Technology, vol. 15, no.1, pp. 76–85, 1997.
[4] Tarek A. Ramadan, Robert Scarmozzino, and Richard M. Osgood, “A novel 1×4 coupler-multiplexer permutation switch for WDM applications,” IEEE Journal of Lightwave Technology, vol. 18, no. 4, pp. 579–588, 2000.
[5] M. Misono, N. Henmi, T. Hosoi, and M. Fujiwara, “High-speed wavelength switching and stabilization of an acoustooptic tunable filter for WDM network in broadcasting stations,” IEEE Photonics Technology, vol. 8, no. 4, pp. 572–574, 1996.
[6] H. G. Bach, A. Umbach, S. van Waasen, R. M. Bertenburg, and G. Unterborsch, “Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application,” IEEE Journal of Selected Topics in Quantum Electronic, vol. 2, no. 2, pp. 418–423, 1996.
[7] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronic,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.
[8] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature, vol. 386, pp. 143–149, 1997.
[9] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. Princeton, NJ: Princeton University Press, 1995.
[10] R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band materials: Low-loss bends and high Q cavities,” Appl. Phys. Lett., vol. 75, pp. 4753–4755, 1994.
[11] A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett., vol. 77, pp. 3787–3790, 1996.
[12] J. Yonekura, M. Ikeda, and T. Bada, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” Journal of Lightwave Technology, vol. 17, pp. 1500–1508, 1999.
[13] A. Talneau, L. Le Gouezigou, and N. Bouadma, “Very efficient ultra-short bends on 2-D photonic-crystal waveguide on OnP substrate,” Proceedings of 27th Eur. Conf. on Opt. Comm. (ECOC’01), pp. 588–589, 2001.
[14] Y. Sugimoto, N. Ikeda, N. Carlsson, and K. Asakawa, “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Optics Letters, vol. 27, no. 6, pp. 388–390, 2002.
[15] O. J. Painter, A. Husain, A Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelength in InGaAsP,” IEEE Journal of Lightwave Technology, vol. 17, no. 11, pp. 2082–2088, 1999.
[16] J. G. Fleming and S. -Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35-1.95mm,” Opt. Lett., vol. 24, pp. 49-51, 1999.
[17] C. Cheng and A. Scherer, “Fabrication of photonic band-gap crystals,” J. Vac. Sci. Technol. B, vol. 13, pp. 2696–2700, 1995.
[18] P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett., vol. 67, pp. 167–169, 1995.
[19] E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Amer. B, vol. 10, pp. 283–295, 1993.
[20] J. W. Haus, “A brief review of theoretical results for photonic band structure,” J. Mod. Optics, vol. 41, no. 2, pp. 195–207, 1994.
[21] P. R. Villeneuve and M. Piche, “Photonic bandgaps in periodic dielectric structures,” Prog. Quantum Electron., vol. 18, no. 2, pp. 153–200, 1994.
[22] Stavroula Foteinopoulou and Costas M. Soukouli, “Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals,” IEEE Journal of Quantum Electronics, vol. 38, no. 7, pp. 844–849, 2002.
[23] Yukio Iida, Yasuhisa Omura and Masataka Tsuji, “Optically tunable narrowband filter using defect-induced pass-band in photonic crystal waveguide,” Proceeding of IEE International SOI conference 2003, pp. 117–118, 29 Sept.-2 Oct., 2003.
[24] M. Naydenkov, B. Jalali, “Advances in silicon-on-insulator photonic integrated circuit (SOIPIC) technology,” Proceedings for 1999 IEEE, pp. 56–66, 1999.
[25] T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan and G. K. L. Wong, ” Large core (~60um) SOI multimode waveguide for optical interconnct”, IEEE photonic Technology Letter, vol. 8, no. 9, pp. 1196–1198, 1996.
[26] J. Tidmarsh, S. Fasham, P. Stopford, A. Tomlinson, T. Bestwick, “A narrow linewidth laser for WDM applications using silicon waveguide technology,” LEOS '99. IEEE Lasers and Electro-Optics Society, vol. 2, pp. 497–498, 1999.
[27] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technology Letters, vol. 12, pp. 59–61, 2000.
[28] Y. Hida, Y. Inoue, F. Hanawa, T. Fukumitsu, Y. Enomoto, N. Takato, “Silica-based 1/spl times/32 splitter integrated with 32 WDM couplers using multilayered dielectric filters for fiber line testing at 1.65/spl mu/m,” IEEE Photonics Technology Letters, vol. 11, pp. 96–98, 1999.
[29] J. P. Raskin, A. Viviani, D. Flandre, J. P. Colinge, “Substrate crosstalk reduction using SOI technology,” IEEE Transactions on Electron Devices, vol. 44, pp. 2252–2261, 1997.
[30] J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, “Low loss integrated-optical rib-waveguides in SOI,” Proceedings of 1991 SOI Conference on IEEE International, pp. 142–143, 1991.
[31] Antonello Cutolo, Mario Iodice, Paolo Spirito, and Luigi Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide.” IEEE Journal of Lightwave Technology, vol. 15, no. 3, pp. 505–518, 1997.
[32] Y. Inoue, A. Kaneko, F. Hanaw, H. Takahashi, K. Hattori, S. Sumida, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexer,” 11th International Conference on Integrated Optics and Optical Fiber Communications and 23rd European Conference on Optical Communications, vol. 5, pp. 33–36, 1997.
[33] N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE Journal on Selected Areas in Communications, vol. 8, pp. 1120–1127, 1990.
[34] L. Wenhua, L. Haifeng, Y. J. Chen, M. Dagenais, D. Stone, “Dual-channel-spacing phased-array waveguide grating multi/demultiplexers,” IEEE Photonics Technology Letters, vol. 8, no. 11, pp. 1501–1503, 1996.
[35] B. Buchold, E. Voges, “Planar arrayed-waveguide grating multi/ demultiplexers based on ion-exchanged waveguides in glass ”, WDM Technology and Applications of IEE Colloquium, pp. 10/1-10/5, 1997.
[36] K. Okamoto, K. Hattori, Y. Ohmori, “Fabrication of multiwavelength simultaneous monitoring device using arrayed-waveguide grating,” Electronics Letters, vol. 32, no. 6, pp. 569–570, 1996.
[37] Thorsten Augustsson, “Bragg grating-assisted MMI-coupler for add/drop multiplexing,” IEEE Journal of Lightwave Technology, vol. 16, no. 8, pp. 1517-1522, 1998.
[38] M. R. Paiam And R. I. MacDonald, “A 12-channel phased-array wave-length multiplexer with multimode interference couplers,” IEEE Photonics Technology Letters, vol. 10, pp. 241–243, 1998.
[39] R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1xN and NxN integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides”, Appl. Phys. Lett., vol. 64, no. 6, pp. 684–686, Feb., 1994.
[40] C. K. Madsen, “A multiport frequency band selector with inherently low loss, at passbands, and low crosstalk,” IEEE Photonics Technology Letters, vol. 10, pp. 1766–1768, Dec., 1998.
[41] T. Augustsson, “Theoretical investigation of a wavelength selective switch architecture based on a Bragg-grating-assisted MMIMI configuration,” IEEE Photonics Technology Letters, vol. 11, pp. 839–841, July 1999.
[42] Pierre A. Besse, Emilio Gini, Maurus Bachmann, and Hans Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” IEEE Journal of Lightwave Technology, vol. 14, no. 10, pp. 2286–2293, 1996.
[43] M. Bachmann, C. Nadler, P. A. Besse, and H. Melchior, “Compact polarization-insensitive multi-Leg 1x4 Mach-Zehnder switch in InGaAsP/InP,” Proc. ECOC, Firenze, Italy, pp. 519–522, 1994.
[44] P. A. Besse, M. Bachmann, C. Nadler, and H. Melchior, “The integrated prism interpretation of multileg Mach-Zehnder interferometers based on multimode interference couplers,” Opt. Quantum Electron., vol. 27, pp. 909–920, 1995.
[45] N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silicon-based single-mode waveguides on silicon and their application to guide-wave optical interferometers,” J. Lightwave Technol., vol. 6, pp. 1003–1010, 1998.
[46] L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Applications of ultrashort pulse propagation in Bragg grating for wavelength for wavelength division multiplexing and code division multiple access,” IEEE J. Quantum Electron., vol. 34, no. 11, pp. 2117–2129, 1998.
[47] T. Kato, “Hybrid photonic integration technology and device application for optical network system,” LEEE/LEOS '98, vol. 2, pp. 399–400, 1998.
[48] Xiaohua Ma and Geng-Sheng Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Communications Magazine, vol. 41, no. 11, pp. S16–S23, 2003.
[49] E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 1, pp. 155–162, 2002.
[50] P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine, vol. 40, no. 3, pp. 88–95, 2002.
[51] Y. -A. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 301–303, 2002.
[52] T. Bakke, C. P. Tigges, and C. T. Sullivan, “1×2 MOEMS switch based on silicon-on-insulator and polymeric waveguides,” Electronics Letters, vol. 38, no. 4, pp. 177–178, 2002.
[53] R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic swutch and its application to 8×8 optical matrix switch,” Journal of Lightwave Technology, vol. 20, no. 6, pp. 993–1000, 2002.
[54] T. Sakata, H. Togo, M. Makihara, F. Shimokawa, and K. Kaneko, “Improvement of switching time in a thermocapillarity optical switch,” Journal of Lightwave Technolongy, vol. 19, no. 7, pp. 1023–1027, 2001.
[55] H. C. Tapalian, J. -P. Laine, and P. A. Lane, “Thernooptical switches using coated microsphere resonators,” IEEE Photonics Technology Letters, vol. 14, no. 8, pp. 1118–1120, 2002.
[56] R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, “Performance and modeling of advanced Ti: LiNbO3 digital optical switches,” Journal of Lightwave Technology, vol. 20, no. 1, pp. 92–99, 2002.
[57] C. M. Gallep and E. Conforti, “ Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique,” IEEE Photonics Technology Letters, vol. 14, no. 7, pp. 902–904, 2002.
[58] N. A. Riza and S. Yuan, “Low optical interchannel crosstalk, fast switching speed, polarization independent 2×2 fibre optic switch using ferroelectric liquid crystals,” Electronics Letters, vol. 34, no. 13, pp. 1341–1342, 1998.
[59] A. J. Agranat, “Electroholographic wavelength selective crossconnect,” Proceeding of 1999 Digest of the LEOS Summer Topical Meetings, pp. II61–II62, 26-30 June 1998.
[60] L. H. Domash, Chen Yong-Ming, P. Haugsjaa, and M. Oren, “Electronically switchable waveguide Bragg grating for WDM routing,” Proceeding of 1997 Digest of the IEEE/LEOS Summer Topical Meetings, pp. 34–35, 11-15 Aug. 1997.
[61] M. J. Potasek and Y. Yang, “Multiterabit-per-second all-optical switching in an nonlinear directional coupler,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 3, pp. 714–721, 2002.
[62] K. Nashimoto, H. Moriyama, S. Nakamura, M. Watanabe, T. Morikawa, E. Osakabe, and K. Haga, “PLZT electro-optic waveguides and switches,” Proceeding of Optical Fiber Communication Conference and Exhibit 2001 (OFC 2001), vol. 4, pp. PD10-1–PD10-3, 2001.
[63] M. P. Earnshaw and D. W. E, Allsopp, “Semiconductor space switches based on multimode interference couplers,” Journal of Lightwave Technology, vol. 20, no. 4, pp. 643–650, 2002.
[64] Katsunari Okamoto, Fundamentals of Optical Waveguides. Japan, NJ: Academic press, 2000.
[65] C. R. Doerr, “Beam propagation method tailored for step-index waveguides,” IEEE Photonics Technology Letters, vol. 13, no. 2, pp. 130–132, 2001.
[66] H. M. Masoudi, M. A. AlSunaidi, J. M. Arnold, “Time-domain finite-difference beam propagation method,” IEEE Photonics Technology Letters, vol. 11, pp. 1274–1276, 1999.
[67] M. Bruel, “Silicon on insulator material technology,” IEE Electronics Letter, vol. 31, pp. 1201–1202, 1995.
[68] D. Pastor, A. Martinez, J. Capmany, and B. Ortega, “Impact of fiber Bragg grating based OADM outband dispersion in DWDM-SCM systems,” IEEE Photonics Technology Lett, vol. 14, no. 4, pp. 567–569, 2002.
[69] H. Shimano, N. Sakashita, F. Okuda, T. Oashi, Y. Yamaguchi, T. Eimori, M. Inuishi, K. Arimoto, S. Maegawa, Y. I noue, S. Konwri, and K. Kyuma, “1V 46ns 16MB SOI-DRAM with body control technique,” IEEE Jounal of Solid-State Circuits, vol. 33, pp. 1712–1720, 1997.
[70] T. Pal, “Guided-wave optics on silicon-physics technology and status”, Progress in Optics, vol. 32, pp. 53–59, 1993.
[71] B. R. Hemenway, O. Solgaard, and D. M. Bloom, “All-silicon integrated optical modulator for 1.3 mm fiber-optic interconnects,” Appl. Phys Lett., vol. 55, no. 4, pp. 349–350, 1989.
[72] X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3 mm in silicon,” IEEE Photonics Technology Letters, vol. 3, pp. 230–231, 1991.
[73] C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electronics Letter, vol. 31, no. 6, pp. 451–452, 1995.
[74] J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, “Low-loss single-mode optical waveguides with large cross section in silicon-on-insulator,” Electronics Letter, vol. 27, pp. 1486–1487, 1991.
[75] J. C. C Fan, M. W. Geis, and B. Y. Tsaur, “Lateral epitaxy by seeded solidification for grown of single-crystal Si films on insulators,” Applied Physics Letter, vol. 38, no. 5, pp. 365–367, 1981.
[76] W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys., vol. 64, no. 10, pp. 4943–4950, 1988.
[77] M. A. Guerra, “The status of SIMOX technology,” Solid State Technology, vol. 33, no. 11, pp. 75-78, 1990.
[78] U. Fischer, T. Zinke, J. -R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technology Letters, vol. 8, no. 5, pp. 647–648, 1996.
[79] Thomas Edward Murphy, Jeffrey Todd Hastings, and Henry I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-no-insulator ridge waveguides,” IEEE Journal of Lightwave Technology, vol. 19, no. 12, pp. 1938–1942, 2001.
[80] M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt., vol. 17, no. 24, pp. 3990–3998, 1978.
[81] P. Danielsen, “Two-dimensional propagating beam analysis of an electrooptic waveguide modulator,” IEEE J. Quantum Electron., vol. 20, pp. 1093–1097, 1984.
[82] T. M. Benson, P. Sewell, A. Vukovic, and D. Z. Djurdjevic, “Advances in the finite difference beam propagation method,” Optical Networks, pp. 36–41, 2001.
[83] M. Lohmeyer, M. Shamonin, P. Hertel, “Boundary conditions for the finite difference beam propagation method based on plane wave solutions of the Fresnel equation,” Journal of Quantum Electronics, vol. 33, no. 2, pp. 279–286, 1997.
[84] S. Ura, R. Nishida, T. Suhara, and H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photonics Technology Letters, vol. 13, no. 2, pp. 133–135, 2001.
[85] Z. Weigang, D. Xiaoyi, Z. Qida, K. Guiyun, and Y. Shuzhong, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technology Letters, vol. 13, no. 12, pp. 1340–1342, 2001.
[86] M. Hill, A. Massara, M. Gioannini,R. V. Penty, and I. H. White, “Performance of single mode laser components using 2D photonic lattice reflectors”, LEOS 2001, pp. 7–8, 2001.
[87] J. L. Hyuek, S. J. B. Yoo, V. K. Tsui, S. K. H. A. Fong, “A simple all-optical label detection and swapping technique incorporating a fiber Bragg grating filter,” IEEE Photonics Technology Letters, vol. 13, no. 6, pp. 635–637, 2001.
[88] L. J. Sargent, A. B. Massara, M. Gioannini, J. Yong, P. J. Heard, R. V. Penty, and I. H. White, “Investigation of 2D-lattice distributed reflector lasers,” LEOS 2001, vol. 1, pp. 275–276, 2001.
[89] Youngchul Chung and Nadir Dagli, “An assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics, vol. 26, no. 8, pp. 1335–1339, 1990.
[90] Youngchul Chung and Nadir Dagli, “Modeing of guided-wave optical components with efficient finite-difference beam propagation methods,” IEEE Antennas and Propagation Society International Symposium, 1992. AP-S. 1992 Digest. Held in Conjuction with: URSI Radio Science Meeting and Nuclear EMD Meeting, 18-25, July, vol. 1, pp. 248–251, 1992.
[91] Hatem El-Refaei, David Yevick, and Ian Betty, “Stable and noniterative bidirectional beam propagation method,” IEEE Photonics Technology Letters, vol. 12, no. 4, pp. 389–391, 2000.
[92] Pui Lin Ho and Ya Yan Lu, “A bidirectional beam propagation method for periodic waveguides,” IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 325–327, 2002.
[93] Hongling Rao, Rob Scarmozzino, and Richard M. Osgood, Jr., “A bidirectional beam propagation method for multiple dielectric interfaces,” IEEE Photonic Technology Letters, vol. 11, no. 7, pp. 830–832, 1999.
[94] P. Kaczmarski and P. E. Lagasse, “Bidirectinal beam propagation method,” Electronics Letters, vol. 24, no. 11, pp. 675–676, 1988.
[95] Norikzu Eda, Kazuhito Furuya, and Yasuharu Suematsu, “Axial mode selectivity in active distributed-reflector for dynamic-single-mode lasers,” IEEE Journal of Lightwave Technology, vol. LT-3, no. 3, pp. 400–407, 1985.
[96] Masashi Msami, Shigeyuki Akiba, and Katsuyuki Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB laser,” IEEE Journal of Quantum Electronics, vol. QE-23, no. 6, pp. 815–821, 1987.
[97] A. G. Rickman, G. T. Reed, and Fereydoon Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” IEEE Journal of Lightwave Technology, vol. 12, no. 10, pp. 1771–1776, 1994.
[98] E. K. Lin, G. Z. Li, Y. Gao, C. S. Guo, “Zero-gap directional coupler switch integration into a silicon-insulator for 1.3mm operation,” Optical Letters, vol. 21, pp.1664–1666, 1996.
[99] A. Layadi, A. Vonsovical, R. Orobtchouk, D. Pascal, A. Koster, “Low loss optical waveguide on standard SOI/SIMOX substrate,” Optical Communication, vol. 146, pp. 31–33, 1998.
[100] J. V. Roey, J. V. D. Donk, and D. Lagasse, “Beam propagation: analysis and assessment,” Journal of the Optical Society of America, vol. 71, pp. 803–810, 1981.
[101] Y. C. Chao. “Optics measurement resolution and BPM errors,” Particle Accelerator Conference, 1997. Proceedings of the 1997, vol. 2, pp. 2125–2127, 1998.
[102] K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photonics Technology Letters, vol. 101, pp. 108–110, 1998.
[103] BeamPROP software including FULLWAVE software, Rsoft, 2000.
[104] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 1971–1974, 1991.
[105] C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermooptical micro-modulator with 700-kHz –3-dB bandwidth,” IEEE Photonics Technology Letters, vol. 7, no. 4, pp. 363–365, 1995.
[106] C. K. Tang, G. T. Reed, A. J. Walton, and A. G. Rickman, “Low-loss, single-mode, optical phase modulator in SIMOX material,” IEEE Journal of Lightwave Technology, vol. 12, no. 8, pp. 1394–1400, 1994.
[107] Antonello Cutolo, Mario Iodice, Paolo Spirito, and Luigi Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide.” IEEE Journal of Lightwave Technology, vol. 15, no. 3, pp. 505–518, 1997.
[108] P. D. Hewitt and G. T. Reed, “Improving the response of optical phase modulators in SOI by computer simulation,” IEEE Journal of Lightwave Technology, vol. 18, no. 3, pp. 443–450, 2000.
[109] Richard A. Soref, and Brian R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, vol. QE-23, no. 1, pp. 123–129, 1987.
[110] Adrian Vonsovice and Alain Koster, “Numerical simulation of a silicon-on-insulator waveguide structure for phase modulation at 1.3mm,” IEEE Journal of Lightwave Technology, vol. 17, no. 1, pp. 129–135, 1999.
[111] Adrian Vonssovici, Regis Orobtchouk, and Alain Koster, “Numerical simulation of a silicon-on-insulator waveguide Fabry-Perot interferometer for intensity light modulators at 1.3mm,” IEEE Journal of Lightwave Technology, vol. 15, no. 11, pp. 2124–2129, 1997.
[112] C. Angulo Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices,” 1.3mm,” IEEE Journal of Lightwave Technology, vol. 21, no. 10, pp. 2332–2339, 2003.
[113] Andrea Irace, Giuseppe Coppola, Giovanni Breglio, and Antonello Cutolo, “Fast silicon-on-silicon optoelectronic router based on a BMFET device,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 1, pp. 14–18, 2000.
[114] P. D. Hewitt and G. T. Reed, “Improved modulation performance of a silicon p-i-n device by trench isolation,” IEEE Journal of Lightwave Technology, vol. 19, no. 3, pp. 387–390, 2001.
[115] A. Irace, G. Coppola, and G. Breglio, “Numerical simulation of a silicon-based optoelectronic filter based on a Bragg grating and P-i-N diode for DWDM optical networks,” Proceedings of IEEE Electron Devices for Microwave and Optoelectronic Applications (EDMO) 2001, pp. 193–197, 15-16, Nov. 2001.
[116] Carlos Angulo Barrios, Vilson Rosa de Almeida, and Michal Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” IEEE Journal of Lightwave Technology, vol. 21, no. 4, pp. 1089–1098, 2003.
[117] C. Angulo Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 506–508, 2004.
[118] Jumana Boussey, Stephanie Chouteau, “Optoelectronic integration in silicon-on-insulator technologies,” Proceedings of 1998 Internation Semiconductor Conference, CAS’98, vol. 2, pp. 407–415, 6-10, Oct. 1998.
[119] Thomas F. Krauss, Brigitte Vogele, Volin R. Stanley, and Richard M. De La Rue, “Waveguide microcavity based on photonic microstructures,” IEEE Photonics Technology Letters, vol. 9, no. 2, pp. 176–178, 1997.
[120] J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu and S. T. Ho, “Nanofabrication of 1-D photonic bandgap structures along photonic wire,” IEEE Photonics Technology Letters, vol. 8, no. 4, pp. 491–493, 1996.
[121] Tae-Yeoul Yun and Kai Chang, “Uniplanar one-dimensional photonic-bandgap structures and resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 3, pp. 549–553, 2001.
[122] Chi-Yang Chang, and Wei Chen Hsu, “Photonic bandgap dielectric waveguide filter,” IEEE Microwave and Wireless Components Letters, vol. 12, no. 4, pp. 137–139, 2002.
[123] Masahiro Imada, Susumu Noda, Alongkarn Chutinan, Masamitsu Mochizuki, and Tomoko Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” IEEE Journal of Lightwave Technology, vol. 20, no. 5, pp. 845–850, 2002.
[124] P. R. Villeneuve, S. Fan, A, Mekis, and J. D. Joannopoulos, “Photocic crystals and their potential applications,” IEE Colloquium on Semiconductor Optical Microcavity Devices and Photonic Bandgaps (Digest No. 1996/267), pp. 1/1–1/7, 5, Dec. 1996.
[125] Daniel J. Ripin, Kuo-Yi Lim, G. S. Petrich, Pierre R. Villeneuve, Shanhui Fan, E. R. Thoen, John D. Joannopoulos, E. P. Ippen, and L. A. Koldziejski, “One-dimensional photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlxOy semiconductor waveguides,” IEEE Journal of Lightwave Technology, vol. 17, no. 11, pp. 2152–2160, 1999.
[126] Jerry C. Chen, Hermann A. Haus, Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” IEEE Journal of Lightwave Technology, vol. 14, no. 11, pp. 2575–2580, 1996.
[127] H. A. Haus, S. Fan, J. S. Foresi, P. R. Villeneuve, J. D. Joannopoulos, and B. S. Little, “Optical-wavelength-scale filter,” Conference Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS’07 10th Annual Meeting), vol. 2, pp. 96–97, 10-13, Nov. 1997.
[128] Sheng Lan and Hiroshi Ishikawa, “High-efficiency reflection-type all-optical switch for ultrashort pulses based on a single asymmetrically confined photonic crystal defect,” Optics Letters, vol. 27, no. 14, pp. 1259–1261, 2002.
[129] F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55mm,” IEEE J. Quantum Electron., vol. 25, pp. 1677–1681, 1989.
[130] H. Inoue, T. Kato, Y. Takahashi, E. Amada, and K. Ishida, “InP-based optical switch module operating through carrier-induced refractive index change,” Optical Engineering, vol. 29, pp. 191–199, 1990.
[131] J. H. Angenent, “Optical switches on InP substrates using carrier depletion with driving voltages as low as 4.5 volts,” Proc. Eur. Conf. On Opt. Com. (ECOC’89) (Gothenburg, Sweden), Sept. 1989, paper WeA13.3.
[132] Toyokatsu Miyashita and Chiryu Inoue, “Sonic-Crystal wave-guides by acrylic cylinders in air: Experimental observations based on numerical analyses,” Proceeding of IEEE Ultrasonics symposium 2001, vol. 1, pp. 615–618, 7-10, Oct. 2001.
[133] Ali Adibi, Yong Xu, Reginald K. Lee, Amnon Yariv, and Axel Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” IEEE Journal of Lightwave Technology, vol. 18, no. 11, pp. 1554–1564, 2000.
[134] H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdre, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” IEEE Journal of Lightwave Technology, vol. 17, no. 11, pp. 2063–2077, 1999.
[135] M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index materials,” Materials Science and Engineering, vol. B74, pp. 168–174, 2000.
[136] Marko Loncar, Theodor Doll, Jelena Vuckovic, and Axel Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” IEEE Journal of Lightwave Technology, vol. 18, no. 10, pp. 1402–1410, 2000.
[137] Toshihiko Baba, Ayumu Motegi, Takeshi Iwai, Naoyuki Fukaya, Yositaka Watanabe, and Atsushi Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE Journal of Quantum Electronics, vol. 38, no. 2, pp. 743–752, 2002.
[138] M. D. B. Charlton, M. E. Zoorob, G. J. Parker, M. C. Netti, J. J. Baumberg, S. J. Cox, H. Kemhadjian, “Visible wavelength photonic crystal devices: Experimental investigations of up-scattering, and line defect waveguide bends,” Proceeding of IEE Artificial Intelligence and Information Retrieval Approaches, pp. 7/1-7/7, 11-12, Nov. 1999.
[139] Marko Loncar, Dusan Nedeljkovic, Theodor Doll, Jelena Vuckovic, Axel Scherer, and Thomas P. Pearsall, “Waveguiding in planar photonic crystals,” Applied Physics Letters, vol. 77, no. 13, pp. 1937–1939, 2000.
[140] Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, “Linear waveguide in photonic-crystal slabs,” Physical Review B, vol. 62, no. 12, pp. 8212–8222, 2000.
[141] Mehmet Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Applied physics Letters, vol. 77, no. 24, pp. 3902–3904, 2000.
[142] Masaya Notomi, Akihiko Shinya, Koji Yamada, Jun-ichi Takahashi, Chiharu Takahashi, and Itaru Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE Journal of Quantum Electronics, vol. 38, no. 7, pp. 736–742, 2002.
[143] Thomas Sondergaard, Jesper Arentoft, and Martin Kristensen, “Theoretical analysis of finite-height semiconductor-on-insulator based planar photonic crystal waveguides,” IEEE Journal of Lightwave Technology, vol. 20, no. 8, pp. 1619–1626, 2002.
[144] P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” Proceedings of IEE Optoelectron, vol. 145, no. 6, pp. 384–390, 1998.
[145] Wim Bogaerts, Vincent Wiaux, Dirk Taillaert, Stephan Beckx, Bert Luyssaert, Peter Bienstman, Associate, and Roel Baets, “Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 4, pp. 928–934, 2002.
[146] Edmond Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55mm wavelengths,” Optics Letters, vol. 26, no. 5, pp. 286–288, 2001.
[147] M. Notomi, A. Shinya, I. Yokohama, K. Yamada, J. Takahashi, and C. Takahashi, “2-D SOI photonic crystal slab and line-defect waveguide,” Proceeding of IEE Laser and Electro-Optics Society (LEOS 2001 14th Annual Meeting), vol. 2, pp. 574–575, 12-13, Nov. 2001.
[148] Masanori Koshiba, Yasuhide Tsuji, and Masafumi Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” IEEE Journal of Lightwave Technology, vol. 18, no. 1, pp. 102–110, 2000.
[149] Masanori Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” IEEE Journal of Lightwave Technology, vol. 19, no. 12, pp. 1970–1975, 2001.
[150] Kane S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. AP-14, no. 3, pp. 302–307, 1966.
[151] Sai-Tak Chu and Sujeet K. Chaudhuri, “A finite-difference time-domain method for design and analysis of guided-wave optical structures, IEEE Journal of Lightwave Technology, vol. 7, no. 12, pp. 2033–2038, 1989.
[152] Kazuaki Sakoda, Optical Properties of Photonic Crystals. Japan: Hokkaido University Press, 2001.
[153] Shawn-Yu Lin, Photonic Crystals and their Optoelectronic Applications. San Jose: SPIE- The International Society for Optical Engineering Press, 2003.
[154] Masatoshi Tokushima and Hirohito Tamada, “Light propagation in a photonic-crystal-slab line-defect waveguide,” IEEE Journal of Quantum Electronics, vol. 38, no. 7, pp. 753–759, 2002.
[155] Pi-Gang Luan and Zhen Ye, “Two dimensional photonic crystal,” arXiv: cond-mat/0105428 v1, pp. 1–15, May 22, 2001.
[156] Marco Mazza, Luc Thevenaz, Philippe Robert, Michel J. Declercq, and Adrian M. Ionescu, “A novel SOI schottky electro-optical modulator for GHz high-speed switching,” Proceeding of the 12th International Conference on Solid-Sate Sensor, Actuators and Microsystems, vol. 2, pp. 1490–1493, 2003.
[157] L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Green, I. Moerman, M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photonics Technology Letters, vol. 6, no. 8, pp. 1008–1010, Aug. 1994.
[158] Q. Lai, M. Bachmann, and H. Melchior, “Low-loss 1×N multimode interference couplers with homogeneous output power distributions realized in silica on Si material,” Electronics Letters, vol. 33, no. 20, pp. 1699–1700, 1997.
[159] L. B. Soldano, M. Bachmann, P. A. Besse, M. K. Smit, and H. Melchior, “Large optical bandwidth of InGaAsP/InP multi-mode interference 3-dB couplers”, Proc. European Conf. Integrated Optics (ECIO), pp. 14.10–14.11, April 1993.
[160] J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguides,” Appl. Phys. Lett., vol. 61, pp. 1754–1756, 1992.
[161] Lucas B. Soldano and Erik C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications (Invited Paper),” IEEE Journal of Lightwave Technology, vol. 13, no. 4, pp. 615–627, 1995.
[162] David S. Levy, Robert Scarmozzino, and Richard M. Osgood, Jr., “Length reduction of tapered N×N MMI devices,” IEEE Photonics Technology Letters, vol. 10, no. 6, pp. 830–832, 1998.
[163] Pierre A. Besse, Maurus Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” IEEE Journal of Lightwave Technology, vol. 12, no. 6, pp. 1004–1009, 1994.
[164] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N×N multimode interference couplers including phase relations,” Applied Optics, vol. 33, no. 18, pp. 3905–3911, 1994.
[165] John M. Heaton, and R. Michael Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technology Letters, vol. 11, no. 2, pp. 212–214, 1999.
[166] Torsten Augustsson, “Proposal of a wavelength-selective switch based on an MMIMZI configuration with wavelength-selective phase-tuning circuits,” IEEE Journal of Lightwave Technology, vol. 20, no. 1, pp. 120–125, 2002.
[167] L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” Journal of Lightwave Technology, vol. 10, no. 12, pp. 1843–1850, Dec. 1992.
[168] E. C. M. Pennings, R. J. Deri, A. Scherer, R. Bhat, T. R. Hayes, N. C. Andreadakis, M. K. Smit, L. B. Soldano, and R. J. Hawkins, “Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference,” Appl. Phys. Lett., vol. 59, pp. 1926–1928, 1991.
[169] F. B. Veerman, P. J. Schalkwijk, E. C. M. Pennings, M. K. Smit, and B. H. Verbeek, “An optical passive 3-dB TMI-coupler with reduced fabrication tolerance sensitivity,” IEEE Journal of Lightwave Technology, vol. 10, no. 3, pp. 306–311, March 1992.
[170] E. C. M.Pennings, R. J. Deri, R. Bhat, T. R. Hayes, and N. C. Andreadakis, “Ultracompact, all-passive optical 90 degrees -hybrid on InP using self-imaging”, IEEE Photonics Technology Letters, vol. 5, no. 6, pp. 701–703, June 1993.
[171] N. S. Lagali, M. R. Paiam, and R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers, IEEE Photonics Technology Letters, vol. 11, no. 6, pp. 665–667, 1999.
[172] R. M. Lorenzo, C. Llorente, E. J. Abrill, and M. Lopez, “Improved self-imaging characteristics in 1×N multimode couplers,” Proceeding of IEEE Optoelectronics, vol. 145, no. 1, pp. 65–69, 1998.
[173] J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. B. Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” IEEE Journal of Lightwave Technology, vol. 10, no. 12, pp. 1926–1930, Dec. 1992.
[174] R. J. Deri, E. C. M. Pennings, A. Scherer, A. S. Gozdz, C. Caneau, N. C. Andreadakis, V. Shah, L. Curtis, R. J. Hawkins, J. B. D. Soole, and J. I. Song, “Ultracompact monolithic integration of balanced, polarization diversity photodetectors for coherent lightwave receivers,” IEEE Photonics Technology Letters, vol. 4, no. 11, pp. 1238–1240, Nov. 1992.
[175] T. F. Krauss, R. M. De La Rue, P. J. R. Laybourn, “Impact of output coupler configuration on operating characteristics of semiconductor ring lasers,” IEEE Journal of Lightwave Technology, vol. 13, no. 7, pp. 1500–1507, July 1995.
[176] R. Roijen, E. C. M. Pennings, M. J. N. Stalen, T. Dongen, B. H. Verbeek, and J. M. M. Heijden, “Compact InP-based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett., vol. 64, pp. 1753–1755, 1994.
[177] H. Yoshimura, K. L. Sato, and N. Takachio, “Future photonic transport networks based on WDM technologies,” IEEE Commun. Mag., vol. 37, pp. 74–81, 1999.
[178] Shyh-Lin Tsao, Jiang-Hung Tien, and Chun-Wei Tsai, “Simulation on an SOI grating-based optical add/drop multiplexer,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1277–1284, 2002.
[179] Baojun Li, and Soo Jin Chua, “2×2 optical waveguide with bow-tie electrode based on carrier-injection total internal reflection in SiGe alloy,” IEEE Photonics Technology Letters, vol. 13, no. 3, pp. 206–208, 2001.
[180] Hisaharu Yanagawa, Ken Ueki, and Yoshiyuki Kamata, “Polarization- and wavelength-insensitive guided-wave optical switch with semiconductor Y junction,” IEEE Journal of Lightwave Technology, vol. 8, no. 8, pp. 1192–1197, 1990.
[181] B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics (Invited Paper),” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, no. 6, pp. 938–947, 1998.
[182] P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photonics Technology Letters, vol. 12, no. 6, pp. 660–662.
[183] Paolo Dainesi, Adrian M. Ionescu, Luc Thevenaz, Kaustav Banerjee, Michel J. Declercq, Philippe Robert, Philippe Renaud, Philippe Fluckiger, Cyrille Hibert, and Georges A. Racine, “3-D integrable optoelectronic devices for telecommunications ICs,” Proceeding of IEEE International Solid-State Circuits Conference (ISSCC 2002), vol. 1, 6, Feb. 2002.
[184] P. Dainesi, L. Thevenaz, and Ph. Robert, “5MHz 2×2 optical switch in silicon on insulator technology using plasma dispersion effect,” Proceeding of 27th European Conference on Optical Communication 2001 (ECOC’01), vol. 2, pp. 132–133, 30 Sept.-4 Oct., 2001
[185] P. Dainesi, L. Thevenaz, Ph. Fluckiger, C. Hibert, G. Racine, Ph, Robert, Ph. Renaud, A. M. Ionescu and M. Declercq, “A novel CMOS SOI unbalanced Mach-Zehnder interferometer: from design and simulations to fabrication and characterization,” Proceeding of IEEE International SOI Conference 2001, pp. 137–138, 1-4, Oct. 2001.
[186] J. C. Campbell and T. Li, “Electro-optical multi-mode waveguide modulator or switch,” Journal Appl. Phys., vol. 50, pp. 6149–6154, 1979.
[187] S. Nagai, G. Morishima, M. Yagi, and K. Utaka, “InGaAsP/InP multimode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys., vol. 38, pp. 1269–1272, 1999.
[188] Shuichi Nagai, Goh Morishima, Hirokazu Inayoshi, and Katsuyuki Utaka, “Multimode interference photonic switches (MIPS),” IEEE Journal of Lightwave Technology, vol. 20, no. 4, pp. 675–681, 2002.
[189] G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Compact InGaAsP/InP 1×2 optical switch based on carrier induced suppression of modal interference,” Electron. Letters, vol. 33, no. 22, pp. 1898–1900, 1997.
[190] M. Papuchon, A. M. Roy, and D. B. Ostrowsky, “Compact InGaAsP/InP: BOA,” Appl. Phys. Lett., vol. 31, pp. 266–267, 1997.
[191] E. R. Thoen, L. A. Molter, and J. P. Donnelly, “ Exact modal analysis and optimization of N×N×1 cascaded waveguide structures with multimode guiding sections,” IEEE Journal of Quantum Electronics, vol. 33, no. 8, pp. 1299–1307, 1997.
[192] H. Wei, J. Yu, Z. Liu, H. Ma, G. Li, X. Zhang, L. Wang, W. Shi and C. Fang, “Integrated tapered MMI couplers in the silicon-on-insulator technology,” Proceeding of Lasers and Electro-Optics (CLEO/Pacific 2001), vol. 2, no. 2, pp. II-246–II-247,15-19, July 2001.
[193] C. G. P. Herben,C. G. M. Vreeburg, X. J. M. Leijtens, H. Blok, F. H. Groen, I. Moerman, J. W. Pedersen, M. K. Smit, “Chirping of an MMI-PHASAR demultiplexer for application in multiwavelength lasers,” IEEE Photonics Technology Letters, vol. 9, no. 8, pp. 1116–1118, 1997.

QR CODE