研究生: |
謝其霖 Xie, Qi-Lin |
---|---|
論文名稱: |
蒸發冷卻模組應用於分離式空調機之開發與性能研究 Development and Performance on Evaporative Cooling Unit applied to Split Type Air Conditioner |
指導教授: |
鄧敦平
Teng, Tun-Ping |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 紙纖維冷卻板 、間接式蒸發冷卻 、空氣預冷 、分離式空調機 、能源效率比 |
英文關鍵詞: | cooling pads, indirect evaporative cooling, air pre-cooling, split type air conditioner, energy efficiency ratio |
DOI URL: | http://doi.org/10.6345/NTNU202000749 |
論文種類: | 學術論文 |
相關次數: | 點閱:164 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的蒸發冷卻模組是由水流分配系統搭配7條長柱狀紙纖維冷卻板組成。利用三種不同厚度的蒸發冷卻模組(CM1-CM3)分別裝置於分離式空調機的冷凝器進風口處。藉由水流分配系統將冷凝水均勻分配至冷卻板上,以間接蒸發冷卻的方式對進入冷凝器的空氣進行預冷,達到提升冷凝器的散熱性能與空調機的運轉效率。空調機性能試驗的環境條件則是參考CNS15712的低溫冷氣能力標準(C1)、CNS14464的T1標準(C2)及本研究自行增設的高溫條件(C3)。研究結果顯示,當實驗環境條件由C1上升到C2時,裝設蒸發冷卻模組的空調機的性能明顯提升。在C2實驗環境條件下是以裝設CM3的空調機能獲得最高的能源效率比(EER)及性能係數(COP),分別比原機提升4.30%、4.00 %。然而,在C3實驗環境條件下,裝設蒸發冷卻模組的空調機性能表現明顯下降。這種現象主要是因為高溫實驗環境條件導致空調機性能降低使得冷凝水量減少進而造成蒸發冷卻模組無法針對冷凝器進行有效蒸發冷卻所致。
The evaporative cooling module in this study is composed of a water flow distribution system and seven long cylindrical paper fiber cooling pads. Three types of evaporative cooling modules (CM1-CM3) with different thicknesses are respectively tested by being installed at the air inlet of the condenser of the separate air conditioner. Through the water flow distribution system, the condensate is evenly distributed to the cooling pad, and the air entering the condenser is pre-cooled by indirectly evaporative cooling to improve the heat dissipation performance of the condenser and the operating efficiency of the air conditioner. The environmental conditions of the air conditioner performance test refer to the low-temperature air-conditioning capacity test standard of CNS15712 (C1), the T1 test standard of CNS14464 (C2), and the high-temperature condition configured in the study (C3). The research results show that the performance of the air conditioner equipped with an evaporative cooling module is significantly improved when the experimental environmental conditions change from C1 into C2. The highest energy efficiency ratio (EER) and coefficient of performance (COP) were obtained with the air-conditioner equipped with CM3 under the experimental environmental conditions of C2, which is 4.30% and 4.00% higher than the original machine, respectively. However, the performance of the air conditioner with the evaporative cooling module was significantly reduced under the environmental conditions of C3. This phenomenon is mainly due to the fact that the high-temperature experimental environmental conditions lead to a decrease in the performance of the air conditioner such that the amount of condensed water reduces, and thus the evaporative cooling module cannot effectively pre-cool the condenser.
參考文獻
[1]eeEuropean Commission, 2030 climate & energy framework. Retrieved From https://ec.europa.eu/clima/policies/strategies/2030_en
[2] European Commission, 2050 long term strategy. Retrieved From https://ec.europa.eu/clima/policies/strategies/2050_en
[3]11鄭宇茹, “領先世界的歐盟氣候法草案來得及挽救全球氣候嗎?” ,CSR@天下,2020年03月13日,取自https://csr.cw.com.tw/article/41372
[4]11李翰林, “台灣如何減碳,因應氣候變遷?” ,地球公民基金會,2019年12月16日,取自https://reurl.cc/5lVRL7
[5] JRAIA,世界のエアコン需要推定, 2019. Retrieved from https://www.jraia.or.jp/download/pdf/we2019.pdf
[6] 經濟部統計處,工業產銷存動態調查-產品統計。取自https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx
[7] 行政院主計總處,107年家庭收支調查報告,2019。取自https://win.dgbas.gov.tw/fies/doc/result/107.pdf
[8]11Abby Huang, “台灣是缺電,還是太「浪費」電——拼命蓋電廠其實不見得有用”,The News Lens 關鍵評論,2018年07月03日,取自https://www.thenewslens.com/article/98103
[9] 台灣電力公司, “電價知識專區-電價小常識” ,台灣電力公司,取自https://www.taipower.com.tw/TC/page.aspx?mid=213
[10]1P. Martínez, J. Ruiz, C. G. Cutillas, P. J. Martínez, A. S. Kaiser and M. Lucas, “Experimental study on energy performance of a split air-conditioner by using variable thickness evaporative cooling pads coupled to the condenser”, Applied Thermal Engineering, vol. 105, pp. 1041 – 1050, 2016.
[11] Z. Han, Q. Liu, Y. Zhang, S. Zhang, J. Liu and W. Li, “Feasibility study on novel room air conditioner with natural cooling capability”, Applied Thermal Engineering, vol. 108, pp. 1310-1319, 2016..
[12] A. Sohani, M. Zabihigivi, M. H. Moradi, H. Sayyaadi and H. H. Balyani, “A comprehensive performance investigation of cellulose evaporative cooling pad systems using predictive approaches”, Applied Thermal Engineering, vol. 110, pp. 1589-1608, 2017.
[13] A.E. Kabeel, Y. A. F. El-Samadony and M. H. Khiera, “Performance evaluation of energy efficient evaporatively air-cooled chiller”, Applied Thermal Engineering, vol. 122, pp. 204-213, 2017.
[14] J. A. K. Mohammed, F. M. Mohammed and M. A. S. Jabber, “Investigation of high performance split air conditioning system by using Hybrid PID controller”, Applied Thermal Engineering, vol. 129, pp. 1240-1251, 2018.
[15] A. K. Dhamneya, S. P. S. Rajput and A. Singh, “Theoretical performance analysis of window air conditioner combined with evaporative cooling for better indoor thermal comfort and energy saving”, Journal of Building Engineering, vol. 17, pp. 52-64, 2018.
[16] W. H. Chen, H. E. Mo and T. P. Teng, “Performance improvement of a split air conditioner by using an energy saving device”, Energy & Buildings, vol.174, pp. 380-387, 2018.
[17]1鍾竣奇, “分離式空調機冷凝器蒸發冷卻模組之開發與應用研究” ,國立臺灣師範大學工業教育研究所,碩士論文,2019。
[18] A. Abdullah, I. B. Said and D. R. Ossen, “A sustainable bio-inspired cooling unit for hot arid regions: Integrated evaporative cooling system in wind tower”, Applied Thermal Engineering, vol. 161, 114201, 2019.
[19] 11X. Huang, L. Chen, L. Yang, X. Du and Y. Yang, “Evaporation aided improvement for cooling performance of large scale natural draft dry cooling system”, Applied Thermal Engineering, vol.163, 114350, 2019.
[20] 11Y. A. Horr, B. Tashtoush, N. Chilengwe, & M. Musthafa, “Operational mode optimization of indirect evaporative cooling in hot climates”, Case Studies in Thermal Engineering, vol.18, 100574, 2020.
[21] 11C. Y. Lin, W. S. Lee, T. P. Teng and D. S. Lee, “Development and application of evaporative cooler for a freezer”, Applied Thermal Engineering, vol. 163, 115411, 2020.
[22]11H. Yang, L. Rong, X. Liu, L. Liu, M. Fan and N. Pei, “Experimental research on spray evaporative cooling system applied to air-cooled chiller condenser”, Energy Reports, vol. 6, pp. 906-913, 2020.
[23] 1許守平,冷凍空調原理與工程,全華圖書股份有限公司,2013。
[24] 1蔡建雄、張金龍、王耀男(譯),基礎熱力學,美商麥格羅希爾股份有限公司,2016。
[25] 1維基百科,熱力學。取自https://zh.wikipedia.org/wiki/%E7%83%AD%E5%8A%9B%E5%AD%A6
[26] 1維基百科,空氣調節。取自https://zh.wikipedia.org/wiki/%E7%A9%BA%E6%B0%A3%E8%AA%BF%E7%AF%80
[27] 1臺北市政府,空調系統節能管理與維護手冊,臺北市政府,2011。
[28]1和泰興業股份有限公司,一對一變頻分離式橫綱系列型錄。取自https://www.hotaidev.com.tw/catalog/PCRTW1802/html/14/index.html
[29]東元電機股份有限公司,MW22ICR-HR產品型錄。取自https://www.tecohome.com.tw/tw/Products/Items/570
[30] 11ASHRAE, The 2012 ASHRAE Handbook – HVAC Systems and Equipment, 2012. Retrieved from https://www.ashrae.org/technical-resources/ashrae-handbook
[31] 1經濟部國家標準檢驗局,CNS15712-1空氣調節機與熱泵-季節性能因數測試與計算法-第一部:冷氣季節性能因數進行性能測試,2013。
[32]1經濟部國家標準檢驗局,CNS14464無風管空氣調節機與熱泵之實驗法及性能等級,2010。
[33]1CLEAR, Evaporative Cooling. Retrieved from https://www.new-learn.info/packages/clear/thermal/buildings/passive_system/evaporating_cooling.html
[34]1WIKIPEDIA, Evaporative cooler. Retrieved from https://en.wikipedia.org/wiki/Evaporative_cooler
[35]1Mordor Intelligence, EVAPORATIVE COOLING MAKET-GROWTH, TRENDS AND FORECASTS (2020-2025). Retrieved from https://www.mordorintelligence.com/industry-reports/evaporative-cooling-market
[36]1B. Porumb, P. Ungureşan, L. F. Tutunaru, A. Serban and M. Balan, “A review of indirect evaporative cooling technology”, Energy process, vol. 85, pp. 461-471, 2016.
[37]1每日頭條, “間接蒸發自然冷卻” ,每日頭條,2019年10月15日,取自https://kknews.cc/zh-tw/tech/j2zr2n6.html
[38]1財團法人台灣綠色生產力基金會,蒸發冷卻節能應用技術手冊,財團法人台灣綠色生產力基金會,2014。
[39]1台灣區冷凍空調工程工業同業工會,莫里爾圖與空氣溼線圖應用。取自https://reurl.cc/dEnE6
[40]1翰寧股份有限公司,空調加濕技術概述。取自http://www.bestav.com.tw/www/ele-00-01-1.pdf
[41] W. Huang, S. Moon, Y. Gao, J. Wang, D. Ozawa and A. Matsumoto, “Hole number effect on spray dynamics of multi-hole diesel nozzles: Anobservation from three- to nine-hole nozzles”, Experimental Thermal and Fluid Science, vol. 102, pp. 387-396, 2019.