簡易檢索 / 詳目顯示

研究生: 陳中亦
Chen, Jhong-Yi
論文名稱: 吩噻嗪化合物之氧化聚合與偶氮化聚合對修飾電位之關係
指導教授: 王忠茂
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 38
中文關鍵詞: 吩噻嗪核黃素循環伏安法原子力顯微鏡氧化聚合偶氮化還原聚合
英文關鍵詞: Phenothiazine, riboflavin, cyclic voltammetry, atomic force microscopy, oxidative polymerization, azo-reduction polymerization
DOI URL: https://doi.org/10.6345/NTNU202202748
論文種類: 學術論文
相關次數: 點閱:166下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑒於吩噻嗪化合物具有與核黃素相似的吩噻嗪結構,本研究於是以循環伏安法(CV)以及原子力顯微鏡(AFM) 探討 phenothiazine 化合物之電化學性質。過程中利用循環伏安法將 Thionine Chloride(TC) 、
    Toluidine Blue (TB)、Methylene Blue (MB)等 Phenothiazine 類化合物氧化聚合及偶氮化還原聚合在 ITO 及 HOPG 表面,並藉此探討修飾電位的影響性,且利用刮除法得知修飾物厚度,最終以終端電位及修飾物厚度來找出修飾及固定用的吩噻嗪化合物。未來在如製作生化感測器上等時我們能得知要用何種吩噻嗪化合物及修飾方法來固定其效果為最好。

    In view of the structural similarity of the thiophene of
    phenothiazine compounds and riboflavin, the electrochemical properties of phenothiazine compounds are studied by Cyclic Voltammetry (CV) and Atomic Force Microscopy (AFM). Cyclic Voltammetry is used to explore the effects of modified potential of Thionine Chloride (TC), Toluidine Blue (TB), Methylene Blue (MB) and other phenothiazine compounds oxidation polymerization and azo-reduction polymerization on ITO and HOPG surface, finally, the scraping method is used to determine the thickness of the modifier, then use thickness of the modifier and final potential to determinate use what kind of phenothiazine compounds to modify and immobile. In the feature we can know what kind of phenothiazine compound is the best to used immobile and what kind of modify method in making such as biosensor as so on.

    目次 摘要 I Abstract II 目錄 III 圖目錄 IV 第一章 緒論 1 第二章 實驗 5 2-1 化學藥品 5 2-2 實驗設備 6 2-3 實驗步驟 7 第三章 實驗結果與討論 10 3-1 修飾電位對 Phenothiazine 氧化聚合之 CV 圖譜探討 10 3-2 刮除法 15 3-2-1 比較不同探針間所造成的誤差 15 3-2-2 最佳修飾層數 17 3-2-3 最佳刮除次數 19 3-2-4 修飾電位對 Phenothiazine 氧化聚合的影響 21 3-2-5 修飾電位對 Phenothiazine 偶氮化還原聚合的影響 29 第四章 結論 36 第五章 參考文獻 37

    (1) C. Walsh, Acc. Chem. Res., 1980, 13, 148
    (2) S. Mowry, P. J. Ogren, J. Chem. Educ., 1999, 76, 970.
    (3) L. Levy, T. Ban, Can Med Assoc J., 1962 Mar 3, 86, 415.
    (4) J. Molnar, Y. Mandi, J. Kiraly, Acta Microbiol Acad Sci Hung., 1976,23,45.
    (5) E. Dominguez, H. L. Lan, Y. Okamoto, P. D. Hale, T. A. Skotheim, L. Gorton, B. Hahn-Hagerdal, Biosensors & Bioelectronics 1993, 8, 229.
    (6) Qiang Gao, Weidong Wang, Ying Ma, Xiurong Yang, Talanta, 2004, 62, 477.
    (7) D. D. Schlereth, A. A. Karyakin, J. Electroanal. Chem., 1995, 395, 221.
    (8) B.-H. Chiou, Y.-T. Tsai, C. M. Wang, Langmuir, 2014, 30, 1550.
    (9) H. Yang, R. L. McCreery, Anal. Chem, 1999, 71, 4081.
    (10) G. ZOGRAFI, M. V. MUNSHI, Journal of Pharmaceutical Sciences, 1970, 59, 819.
    (11) E. Topçu, M. Alanyalıoğlu, J. Appl. Polym. Sci., 2014, 131, 39686.
    (12) 黃祥盈,類核黃素修飾電極製備及其與蛋白質間的交互作用探討,2009,6.
    (13) S. M. SALAPAKA, M. V. SALAPAKA, IEEE Control Systems, 2008, 28, 65.
    (14) G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, The American Physical Society, 1982,49,57.
    (15) G. Binnig, C. F. Quate, The American Physical Society, 1986,56,930.
    (16) 黃英碩,科儀新知,2005,4.
    38
    (17) B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, D. W. Pohl, J. Chem. Phys., 2000, 112, 7761.
    (18) E. Liu, B. Blanpain, J.P. Celis, Wear, 1996, 192, 141.
    (19) D. Sarid., Oxford University Press, 1991, 253.

    下載圖示
    QR CODE