研究生: |
蕭詠瑜 Hsiao, Yung-Yu |
---|---|
論文名稱: |
鋁離子電池中氯鋁酸根離子電化學插層於石墨之臨場分析 In-situ Studies on Electrochemical Intercalation of Tetrachloroaluminate Ions into Graphite for Aluminum-Ion Battery Application. |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 天然鱗片石墨 、膨脹性石墨 、臨場X射線繞射分析 、臨場拉曼光譜分析 |
英文關鍵詞: | natural flake graphite, expanded graphite, in-situ XRD, in-situ Raman |
DOI URL: | https://doi.org/10.6345/NTNU202202003 |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類隨著科技的進步對於能源的需求越來越大,因此開發出具有高能量密度與安全性的能源系統一直是科學家們努力的目標。而鋁金屬的化學性質相較於鋰金屬安定,在地球上的含量僅次於氧和矽,參與電化學反應時牽涉到三個電子的氧化還原故其理論電容量也相當高,是新一代儲能系統的理想材料。
而本篇研究主要利用臨場X射線繞射圖和臨場拉曼光譜分析的方式更深入探討電池充放電時AlCl4-離子對於天然鱗片石墨(SP-1)和膨脹石墨的插層行為。藉由兩種分析方法,證實在充放電過程中AlCl4-離子在石墨層間確實有嵌入嵌出的行為,而透過臨場X射線繞射分析的結果能判斷出AlCl4-離子嵌入石墨層時各繞射峰的晶面,且經計算後得知充電至截止電位時AlCl4-離子對兩種石墨的插層階段皆為3。
With the progress of science and technology, the ever-growing demand for energy is a serious issue. Therefore, the development of energy system with high energy density and safety has long been a subject for scientists. It is known that aluminum metal is more stable than lithium, and the amount of aluminum on earth is only less than oxygen and silicon. Besides, the redox reactions of aluminum involve 3 electrons, which gives a high theoretical capacity. Hence, aluminum has become a new candidate in energy storage system.
In this study, we deeply discussed the behavior of AlCl4- ions intercalating into natural flake graphite (SP-1) and expanded graphite by using in-situ XRD and in-situ Raman. With the two analytical method, the intercalation/deintercalation of AlCl4- ions into graphite is once again confirmed existing during the charging/discharging process. Through the results of in-situ XRD analysis, we can determine the lattice plane of each diffraction peak when AlCl4- ions embedded into graphite layer. Furthermore, with calculations, the stages of two kinds of graphite cathode under fully charged status are determined.
[1] 李文維, 科學發展 2003, 362, 32.
[2] G. A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J.-F. Drillet, S. Passerini, R. Hahn, Adv. Mater. 2016, 28, 7564.
[3] M. Hulot, CR HEBD Acad. Sci 1855, 40, 1148
[4] D. Tommasi, Traité des piles électriques. (Georges Carre, 1889) 131
[5] C.H. Brown, US Patent 503,567 (1893).
[6] G. W. Heise, E. A. Schumacher, N. C. Cahoon, N. C., J. Electrochem. Soc. 1948, 94, 99.
[7] D.E. Sargent, US Patent 2,554,447 (1951).
[8] S. Ruben, US Patent 2,638,489 (1953); 2,796,456 (1957); 2,838,591 (1958); 3,307,976 (1967).
[9] N. C. Cahoon, M. P. Korver, J. Electrochem. Soc. 1959, 106, 469.
[10] S. Zaromb, J. Electrochem. Soc. 1962, 109, 1125.
[11] L. Bockstie, D. Trevethan, S. Zaromb, J. Electrochem. Soc. 1963, 110, 267.
[12] G. L. Holleck, J. Electrochem. Soc. 1972, 119, 1158.
[13] G. L. Holleck, J. Giner, J. Electrochem. Soc. 1972, 119, 1161.
[14] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, Nature 2015, 520, 324.
[15] I. J. Albert, M. A. Kulandainathan, M. Ganesan, V. Kapali, J. Appl. Electrochem. 1989, 19, 547.
[16] A. R. Despić, J. Radošević, P. Dabić, M. Kliškić, Electrochim. Acta. 1990, 35, 1743.
[17] K. Grjotheim, K. Matiasovsky, Acta. Chem. Scand. A 1980, 34, 666.
[18] P. Fellner, M. Chrenkova-Paucirova, K. Matiasovsky, Surf. Technol. 1981, 14, 101.
[19] L. Qingfeng, H. A. Hjuler, R. W. Berg, N. J. Bjerrum, J. Electrochem. Soc. 1990, 137, 2794.
[20] N. Koura, J. Electrochem. Soc. 1980, 127, 1529.
[21] T. Mori, Y. Orikasa, K. Nakanishi, C. Kezheng, M. Hattori, T. Ohta, Y. Uchimoto, J. Power Sources 2016, 313, 9.
[22] L. Geng, G. Lv, X. Xing, J. Guo, Chem. Mater. 2015, 27, 4926.
[23] W. Wang, B. Jiang, W. Xiong, H. Sun, Z. Lin, L. Hu, J. Tu, J. Hou, H. Zhu, S. Jiao, Scientific Reports 2013
[24] N. Jayaprakash, S. K. Das, L. A. Archer, Chem. Commun. 2011, 47, 12610.
[25] M. P. Paranthaman, G. M. Brown, X. Sun, J. Nanda, A. Manthiram, A. Manivannan, in 218th ECS Meeting, 2010.
[26] N. S. Hudak, The J. Phys. Chem. C 2014, 118, 5203.
[27] X.-G. Sun, Z. Bi, H. Liu, Y. Fang, C. A. Bridges, M. P. Paranthaman, S. Dai, G. M. Brown, Chem. Commun. 2016, 52, 1713.
[28] K. R. Seddon, A. Stark, M.-J. Torres, Pure. Appl. Chem. 2000, 72, 2275
[29] L. Qingfeng, H. A. Hjuler, R. W. Berg, N. J. Bjerrum, J. Electrochem. Soc. 1990, 137.
[30] 陈昕, 司士辉, 张漪丽, 应用化学 2004, 21, 613.
[31] 岳竞慧, 高利珍, 岳秀萍, 赵宇光, 能源与节能 2011, 2, 68.
[32] H. Wang, S. Gu, Y. Bai, S. Chen, N. Zhu, C. Wu, F. Wu, J. Mater. Chem. A 2015, 3, 22677.
[33] G. Schmuelling, T. Placke, R. Kloepsch, O. Fromm, H.-W. Meyer, S. Passerini, M. Winter, J. Power Sources 2013, 239, 563.
[34] P. Bhauriyal, A. Mahata, B. Pathak, Phys. Chem. Chem. Phys. 2017, 19, 7980.
[35] S. C. Jung, Y.-J. Kang, D.-J. Yoo, J. W. Choi, Y.-K. Han, J. Phys. Chem. C 2016, 120, 13384.
[36] 魏川育, 化學系, 碩士論文, 國立臺灣師範大學, 2015.
[37] 謝育儒, 化學系, 碩士論文, 國立臺灣師範大學, 2016.
[38] 陳昱勛, 化學系, 碩士論文, 國立臺灣師範大學, 2016.
[39] D.-Y. Wang, C.-Y. Wei, M.-C. Lin, C.-J. Pan, H.-L. Chou, H.-A. Chen, M. Gong, Y. Wu, C. Yuan, M. Angell, Y.-J. Hsieh, Y.-H. Chen, C.-Y. Wen, C.-W. Chen, B.-J. Hwang, C.-C. Chen, H. Dai, Nat. Commun. 2017, 8, 14283.
[40] 莫定山, Raman光譜原理及應用
http://drr.lib.ksu.edu.tw/bitstream/987654321/3320/3/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E4%B9%8B%E5%8E%9F%E7%90%86%E8%88%87%E6%87%89%E7%94%A8.pdf
[41] 羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹https://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf
[42] K.-C. Tsai, H.-C. Kuan, H.-W. Chou, C.-F. Kuan, C.-H. Chen, C.-L. Chiang, J. Polym. Res. 2010, 18, 483.
[43] Y. Ikushima, K. Hatakeda, N. Saito, M. Arai, J. Phys. Chem. 1998, 108, 5855.
[44] W. Huang, R. Frech, J. Electrochem. Soc. 1998, 145, 765.
[45] D. C. Alsmeyer, R. L. McCreery, Anal. Chem. 1992, 64, 1528.
[46] M. S. Dresselhau, G. Dresselhaus, Adv. Phys. 1981, 30, 139.
[47] J. A. Read, J. Phys. Chem. C 2015, 119, 8438.
[48] B. Özmen-Monkul, M. M. Lerner, Carbon 2010, 48, 3205.