研究生: |
許育財 Yu-Cai, Syu |
---|---|
論文名稱: |
多通道腦電波量測系統之研製 Design and Implementation of a Multi-Channel EEG Acquisition System |
指導教授: |
葉榮木
Yeh, Zong-Mu 蔡俊明 Tsai, Chun-Ming |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 腦機介面 、腦電波 、可調式增益 、放大器 、交換式電容濾波器 |
英文關鍵詞: | BCI, EEG, Programmable Gain, Amplifier, Switch Capacity Filter |
論文種類: | 學術論文 |
相關次數: | 點閱:263 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腦機介面(BCI, Brain Computer Interface)提供一個全新的通訊方式,使因神經肌肉受損或患有肌肉萎縮性脊髓側索硬化症等病患,可以透過腦部的活動直接控制外部的裝置,而不需經過神經及肌肉的媒介。但是腦機介面的相關設備,不僅昂貴且體積龐大,對於腦機介面的普及,實不是一項優勢。
因此,本研究目的在於研製一多通道、低成本、小體積及模組化之腦電波擷取系統。本系統包含基本的電子電路,可調適增益放大器、交換式電容濾波模組及以LabVIEW為平台所設計之應用軟體。
硬體設計上,以驅動右腳線路消除共模雜訊,以單晶式交換式電容濾波器,取代傳統主動RC濾波器降低頻率偏移,以數位電阻器取代傳統可變電阻,提高精確度,去除人為調整造成之誤差。印刷電路板佈局上,加入模組化的概念,使腦電波放大電路可進行堆疊,擴充通道數。
製作完成後,將本系統與腦電波專業量測儀器NuAmps進行比較。結果顯示,誤差評估在時域上的誤差平均值與標準差分別為0.1809伏,及0.1153;在頻域上誤差平均值與標準差分別為0.0606伏及0.167。趨勢相似度評估的相似度平均為83.25%。相關評估的相關係數可達0.8以上。
根據實驗結果,說明所研製之多通道腦電波量測系統具可行性。未來期望能將本系統與嵌入式系統做結合,可協助行動不便之使用者獲得更好的生活品質。
Brain Computer Interface (BCI) provides a novel communication method for patients with neuromuscular disorders or amyotrophic lateral sclerosis to directly control external devices with their brain activities, without pass conventional motor output pathways of nerves and muscles. However, the BCI relevant equipment is expensive and bulky, it is hard to be popularized.
The objective of this research is to design and implement a multi-channel, low cost, small-volume and modularized Electro-Encephalo-Gram (EEG) acquisition system. The system consists of fundamental circuits, the programmable gain amplifiers, the switch capacity filter modules and the LabVIEW-based application software.
Concerning the design of hardware, the Drive Right Leg (DRL) is adopted to reduce the common-mode noise. The switch capacity filter is used to replace the traditional active RC filter to reduce the drift of frequency. The digital potentiometer is used to replace traditional rheostat to increase the accuracy and reduce the error caused by artificial adjustment. The concept of module is introduced into the layout of Printed Circuit Board (PCB) to increase the numbers of channel through circuit stacking.
After the system is developed, the measurement performance of the system is compared with the NuAmp which is a professional instrument of BCI. The results show that the average error and the standard deviation are 0.1809 volts and 0.1153, respectively. In frequency domain, the average error and the standard deviation are 0.0606 volts and 0.167, respectively. The average of trend similarity is 83.25%. The correlation coefficient is larger than 0.8.
According to the experiment results, the system is feasible. In the future, the system can be integrated with an embedded system for benefits disabled persons.
1. 王裕進,可調整式即時腦電波生物信號擷取系統,成大工科,碩士論文,民92。
2. 古展燁,以嵌入式收集系統配合非傳統式的分析方法應用於分析心電圖(ECG)訊號之研究,碩士論文,民94。
3. 林正堅,人腦電腦介面之想像左右手動作腦波分類系統,第一屆智慧生活科技研討會,勤益技術學院,台中,民95。
4. 林清山,心理與教育統計學,119 ~ 44頁,東華書局,民94。
5. 高士政,以雙核心處理器為基礎之即時嵌入式無線腦波訊號感測與處理系統及其在駕駛員瞌睡偵測之應用,碩士論文,民94。
6. 洪至懿。特徵擷取與分類應用與想像左右手手指運動之腦波辨識,碩士論文,民91。
7. 沈世評,用線性鑑別分析法分類冥想四個方向之腦機介面研究,碩士論文,民95。
8. 陳星同,架構於個人電腦之心電訊號監測系統實作,碩士論文,民96。
9. 陳致仰,改良式對角化主要成份分析法應用於兩類別想像動作腦電波的分類,碩士論文,民96。
10. 陳錦勳,超取樣二階三角積分調變器,碩士論文,民95。
11. 胡國甫,單通道腦波量測系統的研製及睡眠腦波之基礎分析研究,碩士論文,民92。
12. 曾永進,以藍芽為基礎的無線可攜式心電圖量測系統,碩士論文,民94。
13. 謝弘義,具備多工排程功能之無線嵌入式腦機介面系統及其在即時汽車駕駛員疲勞狀態偵測與提醒之應用,碩士論文,民95。
14. 劉育芳,人腦-電腦介面系統臨床實驗流程之分析研究,碩士論文,民94。
15. 劉省宏,醫用電子實習,全華科技,民88。
16. B. B. Winter, et al., “Driven-Right-Leg Circuit Design,” IEEE Transactions on biomedical engineering, Vol. BEM 30, No.1, Jan., 1983.
17. C. T. Lin, et al., “Development of Wireless Brain Computer Interface With Embedded Multitask Scheduling and its application on Real-Time Driver’s Drowsiness Detection and Warning,” IEEE Transactions on Biomedical Engineering, Vol. 55, No.5 May., 2008.
18. E. M. Spinelli and N. H. Mart´nez, et al., “A Transconductance Driven-Right-Leg Circuit,” IEEE Transactions on Biomedical Engineering, Vol. 46, No. 12, Dec., 1999.
19. G. Rizzoni, Principle and Applications of electrical engineering, Mc Graw Hill, 3rd edition, 2000.
20. H. H. Jasper, “Report of committee on methods of clinical exam in EEG,” Electroencephalogr Clin Neurophysiol, Vol. 10, pp. 370-375, 1958.
21. J. Bhattacharya and H. Petsche, “Phase Synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise,” Signal Processing, Vol. 85, pp. 2161-2177, Jul., 2005.
22. J. Lehtonen, et al., “Online Classification of Single EEG Trials During Finger Movements,” IEEE Transactions on Biomedical Engineering, Vol. 55, No. Feb., 2008.
23. J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan, “Brain-computer interface technology: A review of the first intenational meeting,” IEEE Transactions Rehabilitation Engineering, Vol. 8, No. 2, pp. 164-173, Jun. 2000.
24. M. Engin, T. Dalbast and M. Gu¨ldu¨ren et al., “A prototype portable system for EEG measurements,” Measurement, Vol. 40, pp. 936-942, 2007.
25. Maxim, “MAX291- MAX296 Datasheet,” http://www.maxim-ic.com, 1996.
26. Microchip, “MCP414X/416X/424X/426X Datasheet,” http://www.microchip.com, 2007.
27. National Instruments, “Low-Cost Multifunction DAQ for USB,” http://www.ni.com, 2006.
28. National Instruments, “NI USB-6008/6009 User Guide and Specifications,” http://www.ni.com, 2007.
29. S. h. Farshchi, “A TinyOS-Enabled MICA2-Based Wireless Neural Interface,” IEEE Transactions on biomedical engineering, Vol.53, No.7, Jul., 2006.
30. Texas Instruments, “INA326/INA327 Datasheet,” http://www.ti.com, 2001.
31. Texas Instruments, “Medical Applications Guide,” http://www.ti.com, 2007.
32. Texas Instruments, “OPA335/OPA2335 Datasheet,” http://www.ti.com, 2001.
33. [Image], http://butler.cc.tut.fi/~malmivuo/bem/bembook/13/fi/1302c.gif
34. [Image], http://faculty.washington.edu/chudler/1020.html
35. [Image], http://learn.pmes.tyc.edu.tw/health/100/images/1003.jpg
36. [Image], http://www.internetactu.net/wp-content/documents/bci_brainlab.jpg