簡易檢索 / 詳目顯示

研究生: 朱書儀
SHU-YI, CHU
論文名稱: 利用理論計算比較釕金屬撮合霧中的Innocent Ligand 和 Non-innocent Ligand 之 Pourbaix Diagrams 在水氧化反應差異
Theoretical Pourbiax Diagrams of Ru-Polypyridyl Complexes: A Innocent and Non-innocent Ligand Comparison for Water Oxidation Catalysis
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 35
中文關鍵詞: 水氧化Non-Innocent ligand釕金屬密度泛函理論Pourbaix Diagram
英文關鍵詞: Water Oxidation, Non-Innocent Ligand, Ruthenium, Density Functional Theory, Pourbaix Diagram
論文種類: 學術論文
相關次數: 點閱:182下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將太陽能做能量轉換是水氧化的一個關鍵的半反應,主要以PCET為主,需要牽涉多個質子以及多個電子的轉移(2H2O → O2 + 4H+ + 4e−),水氧化的mechanism和催化劑已經有許多人發表,而Ru單核催化劑對於水氧化催化劑是重要的一個類別,NIL有三種氧化狀態, NILOx.NIL˙.NILRed, 我們得知non-innocent ligand (NIL)能夠分散金屬中心的電荷密度使分子的能量降低,而Tanaka的雙核催化劑對於Ru-NIL是一個有趣的例子,我們利用密度泛涵理論(DFT)來計算Ru(OH2)(tpy)(tBu2Qn), Ru(OH2)(tpy)(Bpm) and Ru(OH2)(tpy)(Bpy) (tBu2Q = 3,5-di-tert-butyl-2,2-benzoquinone, tpy = 2,2’:6’,2”-terpyridine, Bpm = 2,2’-bipyrimidine, Bpy = 2,2'-Bipyridine) complexes的pKa和還原電位,然後繪製pourbaix diagram,為了比較innocent和non-innocent ligand之不同, 本篇論文我們主要著重在研究PCET的過程和尋找低能量的路徑形成O-O bond, 並且利用計算出的pKa以及還原電位(Eo)所繪製出的pourbaix diagram來進行比較,然後我們發現在SMD系統中[RuIV=O] / [RuIII=O] couples有較低的電位,並且在quinone系統中發現了新的中間物[RuIII(3αO•-)(tpy)(βSQ)]+,而這個中間物可以進行radical-radical coupling形成O-O bond ,另外,我們也利用不同的計算方法比較其中的差異,發現在SMD系統中確實有較好的表現。

    Water oxidation is a key half-reaction (2H2O → O2 + 4H+ + 4e−) employed in solar-fuel-based energy conversion, and it is dominated by proton-coupled electron transfer (PCET), given its multi-electron, multi-proton character. Mononuclear Ru-based water oxidation catalysts (WOCs) are a valuable class of WOCs used for water splitting. Noninnocent ligands (NILs) have three oxidation states, NILOx, NIL•, and NILRed, that have an electron redox transformation in common. NILs can help disperse the electron density at the metal center and keep the metal center in low oxidation states. The Tanaka catalyst, an anthracene-bridged dinuclear Ru complex, is an interesting example of a Ru–NIL framework in catalysis. We used density functional theory to calculate pKa and the standard reduction potential of Ru(OH2)(tpy)(tBu2Qn), Ru(OH2)(tpy)(Bpm), and Ru(OH2)(tpy)(Bpy) (tBu2Q = 3,5-di-tert-butyl-2,2-benzoquinone, tpy = 2,2':6',2″-terpyridine, Bpm = 2,2'-bipyrimidine, and Bpy = 2,2'-bipyridine) complexes, and we then constructed the Pourbaix diagram to compare innocent ligands and NILs. We focused on pH-dependent onset catalytic potentials indicative of a PCET-driven low-energy pathway for the formation of products with an O−O bond and investigated the differences between these complexes by using the Pourbaix diagram. We found a lower [RuIV=O]/[RuV=O] couples potential in the solvation model density (SMD) system and a new intermediate complex [RuIII(3αO•-)(tpy)(βSQ)]+ that can promote radical-radical coupling to form an O−O bond. In addition, we used different computational methods to compare the differences and to achieve better performance in the SMD system.

    總目錄 I 圖目錄 II 表目錄 IV 中文摘要 V Abstract VI Chapter 1. Introduction 1 1-1. Characteristics of Noninnocent Ligands 3 1-2. Research Objective 3 Chapter 2. Computational Details 5 2-1. Computational Method 5 2-2. Computational Method of Truhlar 5 2-3. Calculation of Free Energy, pKa, and Potential in Aqueous Solution 5 2-4. Various Computational Methods for Constructing Pourbaix Diagrams 9 Chapter 3. Result and Discussion 10 3-1. Introduction 10 3-2. Comparison of Pourbaix diagrams, pKa, and Reduction Potential 12 3-3. Comparison of Computational Methods 27 Chapter 4. Conclusion 31 Reference 32   圖目錄 Scheme 1. Structure of Ru(OH2)(tpy)(tBu2Qn), Ru(OH2)(tpy)(Bpm) and Ru(OH2)(tpy)(Bpy)investigated in this work……………………………………….....3 Scheme 2. Thermodynamic cycle for the acid dissociation reaction in the gas phase and in aqueous solution. 6 Scheme 3. Thermodynamic cycle for the standard free energy of reaction for the proton-coupled reduction of species O to species R in the gas phase and in aqueous solution. 7 Scheme 4. Characteristic of quinone ligand. 10 Figure 1. Pourbaix diagram for the Ru(OH2)(tpy)(Bpy) complexes in aqueous solution. (a) Calculation without extra water by PCM solvation model. (b) Calculation with extra water by PCM solvation model. 13 Figure 2. Pourbaix diagram for the Ru(OH2)(tpy)(Bpy) complexes in aqueous solution. (a) Single-point solvation calculation without extra water by PCM solvation model. (b) Single-point solvation calculation with extra water by PCM solvation model. 14 Figure 3. Pourbaix diagram for the Ru(OH2)(tpy)(Bpy) complexes in aqueous solution. (a) Single-point solvation calculation without extra water by SMD solvation model. (b) Single-point solvation calculation with extra water by SMD solvation model. 15 Figure 4. Pourbaix diagram for the Ru(OH2)(tpy)(Bpm) complexes in aqueous solution. (a) Calculation without extra water by PCM solvation model. (b) Calculation with extra water by PCM solvation model. 18 Figure 5. Pourbaix diagram for the Ru(OH2)(tpy)(Bpm) complexes in aqueous solution. (a) Single-point solvation calculation without extra water by PCM solvation model. (b) Single-point solvation calculation with extra water by PCM solvation model. 19 Figure 6. Pourbaix diagram for the Ru(OH2)(tpy)(Bpm) complexes in aqueous solution. (a) Single-point solvation calculation without extra water by SMD solvation model. (b) Single-point solvation calculation with extra water by SMD solvation model. 20 Figure 7. Pourbaix diagram for the Ru(OH2)(tpy)(tBu2Qn) complexes in aqueous solution. (a) Calculation without extra water by PCM solvation model. (b) Calculation with extra water by PCM solvation model. 23 Figure 8. Pourbaix diagram for the Ru(OH2)(tpy)(tBu2Qn) complexes in aqueous solution. (a) Single-point solvation calculation without extra water by PCM solvation model. (b) Single-point solvation calculation with extra water by PCM solvation model. 24 Figure 9. Pourbaix diagram for the Ru(OH2)(tpy)(tBu2Qn) complexes in aqueous solution. (a) Single-point solvation calculation without extra water by SMD solvation model. (b) Single-point solvation calculation with extra water by SMD solvation model. 25 Figure 10. Pourbaix diagram for the Ru(OH2)(tpy)(tBu2Qn) complexes in aqueous solution. (a) Single-point solvation calculation without extra water by SMD solvation model with M11-L/MG3S. (b) Single-point solvation calculation without extra water by SMD solvation model with B3LYP/LANL08. 30   表目錄 Table 1. Calculated Values of pKa, Eo, and E1/2 with Ru(OH2)(tpy)(Bpy) at the density Functional Theory Level. 16 Table 2. Calculated Values of pKa, Eo, and E1/2 with Ru(OH2)(tpy)(Bpm) at the density Functional Theory Level. 21 Table 3. Calculated Values of pKa, Eo, and E1/2 with Ru(OH2)(tpy)(tBuQn) at the density Functional Theory Level. 26 Table 4. The pKa error analysis of Ru(OH2)(tpy)(tBu2Qn) without extra water. 28 Table 5. The Eo error analysis of Ru(OH2)(tpy)(tBu2Qn) without extra water. 29

    (1) Umena, Y., Kawakami, K., Shen, J-R., Kamiya, N. Nature 2011, 473, 55–60
    (2) McEvoy, J. P.; Brudvig, G. W. Chem. Rev. 2006, 106, 4455−4483.
    (3) Meyer, T. J.; Huynh, M. H. V.; Thorp, H. H. Angew. Chem., Int. Ed. 2007, 46, 5284−5304.
    (4) Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004−5064.
    (5) Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Chem. Rev. 2012, 112, 4016−4093.
    (6) Gersten, S. W.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc.1982, 104, 4029−4030.
    (7) Gilbert, J. A.; Eggleston, D. S.; Murphy, W. R.; Geselowitz, D. A.; Gersten, S. W.; Hodgson, D. J.; Meyer, T. J. J. Am. Chem. Soc. 1985, 107, 3855.
    (8) Chronister, C. W.; Binstead, R. A.; Ni, J. F.; Meyer, T. J. Inorg. Chem. 1997, 36, 3814.
    (9) Hurst, J. K. Coord. Chem. Rev. 2005, 249, 313.
    (10) Wada, T.; Tsuge, K.; Tanaka, K. Inorg. Chem. 2001, 40, 329-337
    (11) Zong, R.; Thummel, R. P. J. Am. Chem. Soc. 2005, 127, 12802−12803.
    (12) Zhang, G.; Zong, R.; Tseng, H.-W.; Thummel, R. P. Inorg. Chem. 2008, 47, 990−998.
    (13) Tseng, H. W.; Zong, R.; Muckerman, J. T.; Thummel, R. Inorg. Chem. 2008, 47, 11763−11773.
    (14) Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J. J. Am. Chem. Soc. 2008, 130, 16462.
    (15) Wasylenko, D. J.; Ganesamoorthy, C.; Koivisto, B. D.; Henderson, M. A.; Berlinguette, C. P. Inorg. Chem. 2010, 49, 2202−2209.
    (16) Wasylenko, D. J.; Ganesamoorthy, C.; Henderson, M. A.; Koivisto, B. D.; Osthoff, H. D.; Berlinguette, C. P. J. Am. Chem. Soc. 2010, 132, 16094−16106.
    (17) Polyansky, D. E.; Muckerman, J. T.; Rochford, J.; Zong, R. F.; Thummel, R. P.; Fujita, E. J. Am. Chem. Soc. 2011, 133, 14649−14665.
    (18) Badiei, Y. M.; Polyansky, D. E.; Muckerman, J. T.; Szalda, D. J.; Haberdar, R.; Zong, R.; Thummel, R. P.; Fujita, E. Inorg. Chem. 2013, 52, 8845–8850
    (19) Duan, L. L.; Tong, L. P.; Xu, Y. H.; Sun, L. Energy Environ. Sci. 2011, 4, 3296−3313.
    (20) Kang, R.; Yao, J.; Chen, H. J. Chem. Theory Comput. 2013, 9, 1872–1879
    (21) Tong , L.; Inge, A. K.; Duan, L.; Wang , L.; Zou, X. D.; Sun, L. Inorg. Chem. 2013, 52, 2505 –2518.
    (22) Concepcion, J. J.; Jurss, J. W.; Norris, M. R.; Chen, Z.; Templeton, J. L.; Meyer, T. J. Inorg. Chem. 2010, 49, 1277–1279.
    (23) Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. Nat. Chem. 2012, 4, 418−423.
    (24) Concepcion, J. J.; Tsai, M. K.; Muckerman J. T.; Meyer, T. J. J. Am. Chem. Soc., 2010, 132, 1545–1557.
    (25) Cao, R.; Lai, W.; Du, P. Energy Environ. Sci. 2012, 5, 8134–8157.
    (26) Duan, L. L.; Araujo, C. M.; Ahlquist, M. S. G.; Sun, L. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15584−15588.
    (27) Romain, S.; Bozoglian, F.; Sala, X.; Llobet, A. J. Am. Chem. Soc. 2009, 131, 2768–2769
    (28) Boyer, J. L.; Rochford, J.; Tsai, M.-K.; Muckerman, J. T.; Fujita, E. Coord. Chem. Rev. 2010, 254, 309–330.
    (29) Frisch, M. J.; Trucks, G. W.; Cheeseman, J. R.; Scalmani, G.; Caricato, M.; Hratchian, H. P.; Li, X.; Barone, V.; Bloino, J.; Zheng, G.; Vreven, T.; Montgomery, J. J. A.; Petersson, G. A.; Scuseria, G. E.; Schlegel, H. B.; Nakatsuji, H.; Izmaylov, A. F.; Martin, R. L.; Sonnenberg, J. L.; Peralta, J. E.; Heyd, J. J.; Brothers, E.; Ogliaro, F.; Bearpark, M.; Robb, M. A.; Mennucci, B.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Rendell, A.; Gomperts, R.; Zakrzewski, V. G.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao O.; Nakai. H. Gaussian09, RevisionA. 1; Gaussian, Inc: Wallingford, CT, 2009.
    (30) Becke, A. D. J. Chem. Phys. 1993, 98, 5648
    (31) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299−310.
    (32) Roy, L. E.; Hay, P. J.; Martin, R. L. Revised Basis Sets for the LANL Effective Core Potentials. J. Chem. Theory Comput. 2008, 4, 1029−1031.
    (33) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acfa 1973, 28, 213
    (34) Dill, J. D.; Pople, J. A. J. Chem. Phys. 1975, 62, 2921.
    (35) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117−129.
    (36) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999−3093.
    (37) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378 – 6396.
    (38) Marenich, A.V.; Majumdar, A.; Lenz, M.; Cramer, C. J.; Truhlar, D. G. Angew. Chem. 2012, 124, 12982 –12986
    (39) Peverati, R.; Truhlar, D. G.; J. Phys. Chem. Lett. 2012, 3, 117 – 124.
    (40) Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 3898.
    (41) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650 – 654; (b) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W. Schleyer, P. von R. J. Comput. Chem. 1983, 4, 294 –301.
    (42) MacQuarrie, D. M. Statistical Mechanics; Harper and Row: New York, 1970.
    (43) Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.; Earhart, A. D.; Coe, J. V.; Tuttle, T. R. J. Phys. Chem. A 1998, 102, 7787–7794.
    (44) Lewis, A.; Bumpus, J. A.; Truhlar, D. G.; Cramer, C. J. J. Chem. Educ. 2004, 81, 596–604.

    下載圖示
    QR CODE