研究生: |
華春和 |
---|---|
論文名稱: |
影像邊緣偵測之參數化FPGA架構設計 A Parameterized FPGA Architecture for Image Edge Detection Algorithms |
指導教授: |
張吉正
Chang, Chi-Jeng 蕭培墉 Hsiao, Pei-Yung |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
中文關鍵詞: | 數位影像處理 、邊緣偵測 、參數化 、FPGA架構設計 |
論文種類: | 學術論文 |
相關次數: | 點閱:265 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
邊緣乃是具有相當差異之局部特性所構成的邊界,此局部特性包含灰階值、顏色、紋理結構…等。所以在許多的應用場合中,皆以影像邊緣偵測作為影像前處理的過程中一個最重要的步驟。在許多情形下,影像中的物件可以單獨由外型辨識出來,假如一張影像只留下邊緣部分的資訊,這樣一來不但提供了一個做影像分割的方法,也可以大量的減少影像處理及儲存的資料量。
在本研究中對於目前最適合硬體化的邊緣偵測方法,進行演算法的整理與分析,並利用FPGA來實現影像邊緣偵測演算法的硬體架構。所提出影像邊緣偵測參數化架構,其採取的參數化的設計原則包含可以調整影像尺寸(Image Dimension),可選擇不同的邊緣運算子(Edge Operator)、梯度值運算方法(Gradient Magnitude)以及可調整邊緣影像輸出時的像素置換模式(Pixel Replace)。此硬體架構對一幅256x256 Pixels的八位元灰階影像進行邊緣偵測,只需大約1.4ms的運算時間,以相同的原始影像及參數設定,個人電腦(PC)則需要24ms才能完成全部的運算,因此本論文所提之架構的運算速度比個人電腦快了十七倍。此架構所花費的硬體資源不高,且運算速度完全符合即時影像處理的需求,將提供使用者更高之使用彈性及方便性。
[1]Danny Crookes, “Architectures for high performance image processing:The future,” Elsevier Science, Journal of systems architecture. pp 739-748, 1999.
[2]Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 2nd ed:Prentice Hill, 2002.
[3]C. Torres-Huitzil, M. Arias-Estrada, “ An FPGA Architecture for High Speed Edge and Corner Detection,” Fifth IEEE International Workshop on Computer Architecture for Machine Perception, pp. 112-116, 2000.
[4]Q. Gongyuan, S. Wood, “Edge detection using improved morphological gradient,” IEEE Signals, The Thirty-Second Asilomar Conference on Systems & Computers, vol. 2, pp.954-958, 1-4 Nov 1998.
[5]M.B. Ahmad, Tae-Sun Choi, “Local Threshold and Boolean Function Based Edge Detection,” IEEE Transactions on Consumer Electronics, vol. 45 no. 3, pp.674-679, Aug 1999.
[6]F. Faghih, M. Smith, “Combining Spatial and Scale-Space Techniques for Edge Detection to Provide a Spatially Adaptive Wavelet-Based Noise Filtering Algorithm,” IEEE Transactions on image processing, vol. 11, no. 9, 2002.
[7] R.C.D.M. Tavares, C.J.N. Jr. Coelho, A.D.A. Araujo, A.O. Fernandez, “Implementation of an Edge Detection Algorithm in a Reconfigurable Computing System,” XI Brazilian Symposium on Integrated Circuit Design, 1998.
[8]Zhigang Jin, N.L. Passos, “Predicting conditional branch outcomes on a sobel edge detecting filter,” IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 3192-3195, 2002.
[9]S. Dawood, S.J. Visser, J.A. Williams, “ Reconfigurable FPGAs for real time image processing in space,” The 14th International Conference on Digital Signal Processing, vol. 2 , 2002.
[10]A. Benedetti, A. Prati, N. Scarabottolo, “ Image convolution on FPGAs: the implementation of a multi-FPGA FIFO structure,” The 24th IEEE Euromicro Conference, vol. 1, pp. 123-130, 25-27 Aug 1998.
[11]K. Stuart, L. SukHwan, L. Xinqiao, E.G. Abbas , “ A 10000 Frames/s CMOS Digital Pixel Sensor,” IEEE Journal of Solid-State Circuits, vol.36, no.12, 2001.
[12]N. Kanopoulos, N. Vasanthavada,R.L. Baker,” Design of an image edge detection filter using the Sobel operator,” IEEE Journal of Solid-State Circuits, vol. 23, no. 2, pp. 358-367, Apr 1988.
[13]M. Boo; E. Antelo, J.D. Bruguera, “ VLSI implementation of an edge detector based on Sobel operator,” The 20th EUROMICRO Conference on System Architecture and Integration, pp.506-512, 5-8 Sep 1994.
[14]T. Aboulnasr, W. Steenaart, “ Real-time systolic array processor for 2-D spatial filtering,” IEEE Transactions on Circuits and Systems, vol. 35, no. 4, pp. 451 -455, Apr 1988.
[15]C. Torres-Huitzil, M. Arias-Estrada, “ An FPGA Architecture for High Speed Edge and Corner Detection,”, Fifth IEEE International Workshop on Computer Architecture for Machine Perception, pp. 112-116, 2000.
[16]Fahad M. Alzahrani, Tom Chen, “A Real-Time Edge Detector: Algorithm and VLSI Architecture,” Real-Time Imaging, vol. 3, no. 5, pp. 363-378, October, 1997,
[17] D. Demigny, “ On optimal linear filtering for edge detection,” IEEE Transactions on Image Processing, vol. 11, no. 7, pp. 728-737, July 2002.
[18]J. Bevington, R. Mersereau, “Differential operator based edge and line detection,” IEEE International Conference on ICASSP Acoustics, Speech, and Signal Processing , vol. 12, pp. 249 -252, Apr 1987.
[19]E.R. Davies, “ Optimising computation of hexagonal differential gradient edge detector,” Electronics Letters , vol. 27, no. 17, pp. 1526-1527, 15 Aug 1991.