研究生: |
顏家禾 Yen, Chia-Ho |
---|---|
論文名稱: |
利用基因改造工程優化大腸桿菌BL21對間二甲苯之偵測能力 Enhanced detection of m-xylene by engineering Escherichia coli BL21 |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | TOL網絡 、XylR蛋白 、微生物感測器 、戀臭假單胞菌 、大腸桿菌 、環境分析方法 |
英文關鍵詞: | TOL network, XylR protein, biosensor, Pseudomonas putida, Escherichia coli, environmental analysis |
DOI URL: | https://doi.org/10.6345/NTNU202204365 |
論文種類: | 學術論文 |
相關次數: | 點閱:156 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用基因改造工程,擷取戀臭假單胞菌 (Pseudomonas putida)TOL質體中的xyl調控組,並嵌入人工質體中。當大腸桿菌BL21感測到環境中的間二甲苯 (m-xylene),XylR蛋白會與間二甲苯結合形成複合物,此複合物會觸發下游啟動子,開始轉錄形成報導蛋白。本研究借助兩種蛋白作為訊號輸出:一是紅色螢光蛋白 (RFP);二是顯色明顯的紫茉莉4,5多巴雙加氧酶 (MJDOD),能將左旋多巴催化形成甜菜色素。透過對TOL網絡 (TOL network)調節機轉的了解,我們以一系列人工質體進行實驗,除了置換啟動子,利用不同報導蛋白進行檢測也是研究方向之一。經過實驗比較與佐證,我們發現其中一個菌株針對間二甲苯具有不錯的偵測結果,訊號線性範圍從0至1600μM,也具有一定的專一性。為了增加在野外進行環境分析的實用性,我們以瓊脂糖 (agarose)包覆菌液形成菌珠,可省略實驗前細菌培育步驟。綜合上述特點,本研究為有機溶劑污染檢測方式,增添一個可能性。
This thesis focuses on utilizing xyl gene cluster to engineer an artificial plasmid. When engineered Escherichia coli BL21 strain senses m-xylene in environment, XylR protein binds to m-xylene and forms a complex. The complex triggers promoter of reporter protein, then reporter protein will be transcribed. We employed two signal outputs, one is red fluorescence protein (RFP), the other is Mirabilis jalapa DOPA 4,5-dioxygenase (MJDOD). RFP is a fast-folding protein and betaxanthin has brilliant color, which is synthesized from L-3,4-dihydroxyphenylalanine (L-DOPA) by MJDOD. We design various constructs in order to enhance detection performance based on the regulation mechanism of TOL network. The best performance strain was screened and examined, which was specific to m-xylene and had detection linear range: 0~1600μM. For portable application, our biosensor was coated by agarose to form bacterial beads. Bacterial beads can detect m-xylene without complex incubation procedures, which saves a lot of time. With these advantages, XylR-based biosensor can be an alternative detection option for organic solvents
1. Davies, J. I.; Evans, W. C., Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochemical Journal 1964, 91 (2), 251-261.
2. Worsey, M. J.; Williams, P. A., Metabolism of toluene and xylenes by Pseudomonas putida mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology 1975, 124 (1), 7-13.
3. Willardson, B. M.; Wilkins, J. F.; Rand, T. A.; Schupp, J. M.; Hill, K. K.; Keim, P.; Jackson, P. J., Development and Testing of a Bacterial Biosensor for Toluene-Based Environmental Contaminants. Applied and Environmental Microbiology 1998, 64 (3), 1006-1012.
4. de las Heras, A.; Fraile, S.; de Lorenzo, V., Increasing Signal Specificity of the TOL Network of Pseudomonas putida mt-2 by Rewiring the Connectivity of the Master Regulator XylR. Public Library of Science Genetics 2012, 8 (10), e1002963.
5. Calles, B.; de Lorenzo, V., Expanding the boolean logic of the prokaryotic transcription factor XylR by functionalization of permissive sites with a protease-target sequence. ACS Synthetic Biology 2013, 2 (10), 594-603.
6. Silva-Rocha, R.; de Lorenzo, V., Engineering multicellular logic in bacteria with metabolic wires. ACS Synthetic Biology 2014, 3 (4), 204-209.
7. Silva-Rocha, R.; de Jong, H.; Tamames, J.; de Lorenzo, V., The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BioMed Central Systems Biology 2011, 5 (1), 1-16.
8. de las Heras, A.; Martinez-Garcia, E.; Domingo-Sananes, M. R.; Fraile, S.; de Lorenzo, V., Rationally rewiring the connectivity of the XylR/Pu regulatory node of the m-xylene degradation pathway in Pseudomonas putida. Integrative Biology 2016, 8, 571-8576.
9. Kessler, B.; Herrero, M.; Timmis, K. N.; de Lorenzo, V., Genetic evidence that the XylS regulator of the Pseudomonas TOL meta operon controls the Pm promoter through weak DNA-protein interactions. Journal of Bacteriology 1994, 176 (11), 3171-3176.
10. Kasai, Y.; Inoue, J.; Harayama, S., The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake. Journal of Bacteriology 2001, 183 (22), 6662-6666.
11. Moreno, R.; Fonseca, P.; Rojo, F., The Crc Global Regulator Inhibits the Pseudomonas putida pWW0 Toluene/Xylene Assimilation Pathway by Repressing the Translation of Regulatory and Structural Genes. The Journal of Biological Chemistry 2010, 285 (32), 24412-24419.
12. Marqués, S.; Gallegos, M.-T.; Manzanera, M.; Holtel, A.; Timmis, K. N.; Ramos, J. L., Activation and Repression of Transcription at the Double Tandem Divergent Promoters for the XylR and XylS Genes of the TOL Plasmid of Pseudomonas putida. Journal of Bacteriology 1998, 180 (11), 2889-2894.
13. Fernandez-López, R.; Ruiz, R.; de la Cruz, F.; Moncalián, G., Transcription factor-based biosensors enlightened by the analyte. Frontiers in Microbiology 2015, 6, 648.
14. Devos, D.; Garmendia, J.; Lorenzo, V. d.; Valencia, A., Deciphering the action of aromatic effectors on the prokaryotic enhancer-binding protein XylR: a structural model of its N-terminal domain. Environmental Microbiology 2002, 4 (1), 29-41.
15. Garmendia, J.; De Lorenzo, V., The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Molecular Microbiology 2000, 38 (2), 401-410.
16. De Carlo, S.; Chen, B.; Hoover, T. R.; Kondrashkina, E.; Nogales, E.; Nixon, B. T., The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes & Development 2006, 20 (11), 1485-1495.
17. Morett, E.; Segovia, L., The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. Journal of Bacteriology 1993, 175 (19), 6067-6074.
18. Delgado, A.; Salto, R.; Marqués, S.; Ramos, J. L., Single Amino Acids Changes in the Signal Receptor Domain of XylR Resulted in Mutants That Stimulate Transcription in the Absence of Effectors. The Journal of Biological Chemistry 1995, 270 (10), 5144-5150.
19. Bush, M.; Dixon, R., The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ(54)-Dependent Transcription. Microbiology and Molecular Biology Reviews : MMBR 2012, 76 (3), 497-529.
20. Dworkin, J.; Ninfa, A. J.; Model, P., A protein-induced DNA bend increases the specificity of a prokaryotic enhancer-binding protein. Genes & Development 1998, 12 (6), 894-900.
21. Tropel, D.; van der Meer, J. R., Bacterial Transcriptional Regulators for Degradation Pathways of Aromatic Compounds. Microbiology and Molecular Biology Reviews 2004, 68 (3), 474-500.
22. Tobes, R.; Ramos, J. L., AraC-XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Research 2002, 30 (1), 318-321.
23. Vee Aune, T. E.; Bakke, I.; Drabløs, F.; Lale, R.; Brautaset, T.; Valla, S., Directed evolution of the transcription factor XylS for development of improved expression systems. Microbial Biotechnology 2010, 3 (1), 38-47.
24. Domínguez-Cuevas, P.; Marín, P.; Busby, S.; Ramos, J. L.; Marqués, S., Roles of Effectors in XylS-Dependent Transcription Activation: Intramolecular Domain Derepression and DNA Binding. Journal of Bacteriology 2008, 190 (9), 3118-3128.
25. Domínguez-Cuevas, P.; Marín, P.; Marqués, S.; Ramos, J. L., XylS–Pm Promoter Interactions through Two Helix–Turn–Helix Motifs: Identifying XylS Residues Important for DNA Binding and Activation. Journal of Molecular Biology 2008, 375 (1), 59-69.
26. Domínguez-Cuevas, P.; Ramos, J.-L.; Marqués, S., Sequential XylS-CTD Binding to the Pm Promoter Induces DNA Bending Prior to Activation. Journal of Bacteriology 2010, 192 (11), 2682-2690.
27. Ruíz, R.; Marqués, S.; Ramos, J. L., Leucines 193 and 194 at the N-Terminal Domain of the XylS Protein, the Positive Transcriptional Regulator of the TOL meta-Cleavage Pathway, Are Involved in Dimerization. Journal of Bacteriology 2003, 185 (10), 3036-3041.
28. Verma, N.; Singh, M., Biosensors for heavy metals. Biometals 2005, 18 (2), 121-129.
29. Daunert, S.; Barrett, G.; Feliciano, J. S.; Shetty, R. S.; Shrestha, S.; Smith-Spencer, W., Genetically Engineered Whole-Cell Sensing Systems: Coupling Biological Recognition with Reporter Genes. Chemical Reviews 2000, 100 (7), 2705-2738.
30. Matthews, B. W., The structure of E. coli β-galactosidase. Comptes Rendus Biologies 2005, 328 (6), 549-556.
31. Sasaki, N.; Abe, Y.; Goda, Y.; Adachi, T.; Kasahara, K.; Ozeki, Y., Detection of DOPA 4,5-Dioxygenase (DOD) Activity Using Recombinant Protein Prepared from Escherichia coli Cells Harboring cDNA Encoding DOD from Mirabilis jalapa. Plant and Cell Physiology 2009, 50 (5), 1012-1016.
32. Schleif, R., AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiology Reviews 2010, 34 (5), 779-796.
33. Gallegos, M. T.; Schleif, R.; Bairoch, A.; Hofmann, K.; Ramos, J. L., Arac/XylS family of transcriptional regulators. Microbiology and Molecular Biology Reviews 1997, 61 (4), 393-410.
34. Ramos, J. L.; Rojo, F.; Zhou, L.; Timmis, K. N., A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and the Escherichia coli AraC activators. Nucleic Acids Research 1990, 18 (8), 2149-2152.
35. Guzman, L. M.; Belin, D.; Carson, M. J.; Beckwith, J., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of Bacteriology 1995, 177 (14), 4121-4130.
36. Jacob, F.; Monod, J., Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 1961, 3 (3), 318-356.
37. Shuman, H. A.; Silhavy, T. J., The art and design of genetic screens: Escherichia coli. Nature Reviews Genetics 2003, 4 (6), 419-431.
38. Bell, C. E.; Lewis, M., A closer view of the conformation of the Lac repressor bound to operator. Nature Structural & Molecular Biology 2000, 7 (3), 209-214.
39. Campbell, R. E.; Tour, O.; Palmer, A. E.; Steinbach, P. A.; Baird, G. S.; Zacharias, D. A.; Tsien, R. Y., A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (12), 7877-7882.
40. Sekiguchi, H.; Ozeki, Y.; Sasaki, N., In Vitro Synthesis of Betaxanthins Using Recombinant DOPA 4,5-Dioxygenase and Evaluation of Their Radical-Scavenging Activities. Journal of Agricultural and Food Chemistry 2010, 58 (23), 12504-12509.
41. DeLoache, W. C.; Russ, Z. N.; Narcross, L.; Gonzales, A. M.; Martin, V. J. J.; Dueber, J. E., An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology 2015, 11 (7), 465-471.
42. Buffi, N.; Merulla, D.; Beutier, J.; Barbaud, F.; Beggah, S.; van Lintel, H.; Renaud, P.; Roelof van der Meer, J., Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples. Lab on a Chip 2011, 11 (14), 2369-2377.