簡易檢索 / 詳目顯示

研究生: 林翰柏
Lin, Han-Bo
論文名稱: 以每日步數作為高齡者商用行動裝置測量之效度初探
A Validity Study of Commercial Mobile Devices as Measuring Daily Steps in Older Adults
指導教授: 廖邕
Liao, Yung
口試委員: 廖邕
Liao, Yung
薛名淳
Hsueh, Ming-Chun
顏心彥
Yen, Hsin-Yen
口試日期: 2024/05/03
學位類別: 碩士
Master
系所名稱: 運動休閒與餐旅管理研究所
Graduate Institute of Sport, Leisure and Hospitality Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 68
中文關鍵詞: 三軸加速規智慧型手機穿戴式裝置
英文關鍵詞: 3-axis accelerometer, smartphone, wearable device
研究方法: 次級資料分析
DOI URL: http://doi.org/10.6345/NTNU202401345
論文種類: 學術論文
相關次數: 點閱:240下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技及資訊世代的來臨,在2021-2023年間,臺灣智慧型手機持有率高達89%,臺灣高齡者商用行動裝置使用率達37.2%,國內過往研究較少針對不同商用行動裝置做效度研究。據此,本研究之主要研究目的為以三軸加速規測量之步數為黃金校標,比較其與商用行動裝置測量每日步數之關係。本研究以便利取樣的方式,招募社區高齡者198名進行研究,刪除未使用商用行動裝置的高齡者,最後有175位高齡者納入分析,每名受試者一天以一筆數據計算,總共有1400筆資料,排除不完整的資料410筆,最後共有990筆資料納入後續分析。本研究之研究工具如下1.以ActiGraph GT3X+三軸加速規測量高齡者每日步數,做為黃金校標。2.高齡者主要使用的商用行動裝置 (如智慧型手機及穿戴式裝置) 所測量高齡者之每日步數3.使用自填式問卷獲取社會人口學變項。分析方法包括描述統計、皮爾森相關、獨立樣本t檢定以及Bland-Altman plot圖。本研究之結果發現,所有商用行動裝置與三軸加速規所測之步數之皮爾森相關性皆大於0.8,表示裝置皆具有良好的效度。進一步區分商用行動裝置後,智慧型手機測量之每日步數平均會低估790步/天;而穿戴式裝置測量之每日步數平均則會高估1012步/天。綜上所述,智慧型手機會低估高齡者每日步數,而穿戴式裝置則會高估每日步數。有鑑於商用行動裝置可能對個人、臨床醫生和研究人員進行身體活動監測有實際用途,建議未來可以納入更多的樣本以及針對更多品牌的裝置進行效度研究,給予高齡者自我監測步數的依據準則,促進他們採取更加健康的生活方式和行為習慣。

With the advent of the technology and information generation, the smartphone ownership rate in Taiwan reached 89% in 2021-2023, and the utilization rate of commercial mobile devices among the elderly in Taiwan reached 37.2%. It is noticed that there are few studies on the validity of different commercial mobile devices in Taiwan. Therefore, the main objective of this study was to compare the relationship between the accelerometer-measured steps and the steps measured by commercial mobile devices. In this study, we recruited 198 elderly people in the community using convenience sampling, and 175 elderly people who had commercial mobility devices were included in the analysis. With a total of 1,400 day-to-day data, and 410 incomplete data of them were excluded, and finally 990 data were included in the subsequent analysis. The research tools were as follows: 1. ActiGraph GT3X+ 3-axis accelerometer was used to measure the daily step counts of the elderly as a golden calibration; 2. the daily step counts of the elderly were measured by the commercial mobile devices that were mainly used by the elderly (e.g., smart phones and wearable devices); and 3. the socio-demographic variables were obtained by using a self-administered questionnaire. The methods of analysis included descriptive statistics, Pearson's correlation, independent sample t-test and Bland-Altman plot. Our results showed that the Pearson's correlation between the number of steps measured by all commercial mobility devices and the 3-axis accelerometer was all greater than 0.8, which indicated that these devices had good validity. After further differentiating the commercial mobile devices, the daily steps measured by smartphones were underestimated by 790 steps/day on average, while the daily steps measured by wearable devices were overestimated by 1012 steps/day on average. In conclusion, smartphones underestimated the number of daily steps among elderly people, while wearable devices overestimated. For commercial mobile devices for physical activity monitoring by individuals, clinicians and researchers, it is suggested that future studies should include more samples and more brands of devices, in order to inform the elderly for self-monitoring their steps and to promote the adoption of healthier lifestyles and behaviors.

第壹章 緒論1第一節 研究背景與動機1第二節 研究目的3第三節 研究問題3第四節 研究範圍及限制4第五節 操作型定義4第貳章 文獻探討6 第一節 高齡者步行行為6第二節 測量每日步數之相關研究14第參章 研究方法22第一節 研究架構22第二節 研究假設23第三節 研究對象23第四節 研究工具25第五節 研究流程26第六節 資料處理與分析27第肆章 結果與討論29第一節 研究對象人口社會學之現況29第二節 社會人口學變項與每日步數之關聯性第三節31三軸加速規與商用行動裝置測量每日步數之關聯性33第四節 綜合討論43第伍章 結論與建議47第一節 結論47第二節 研究限制與建議48參考文獻50附錄57附錄一 研究倫理審查核可證明書57附錄二 睡眠日誌表58附錄三 問卷提項59附錄四 TANITA報告範本68

方進隆 (1995)。體適能與全人健康。中華體育季刊,9(3),62-69。 https://doi.org/10.6223/qcpe.0903.199512.1710
行政院衛生福利部國民健康署 (2010)。台灣健康體能指引 https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1411
張育愷、王俊智、祝堅恆 (2012)。身體活動流行病學研究設計之概述。中華體育季刊,26(3),283-290。https://doi.org/10.6223/qcpe.2603.201209.1501
張家萱、周學雯、林麗娟 (2020)。不同目標設定方式對高齡者提升身體活動量之影響:以智慧健身手環為介入。體育學報,53(2),189-200。 https://doi.org/10.6222/pej.202006_53(2).0004
陳上迪、陳俐蓉、古博文 (2020)。成人每日步行數與健康:日行萬步健康才保固?。臺灣公共衛生雜誌,39(1),17-26。https://doi.org/10.6288/tjph.202002_39(1).108044
陳嬿如、林承萓、廖邕 (2016)。身體活動流行病學架構之介紹。大專體育,(137),31-36。https://doi.org/10.6162/SRR.2016.137.04。
衛生福利部中央健康保險署 (2014)。新聞發佈。https://www.nhi.gov.tw/ch/cp-7444-90a17-3255-1.html
劉影梅、吳佳珊 (2009)。身體活動評估與量表。中華民國糖尿病衛教學會會訊,5(3),11-17。https://doi.org/10.6583/tade.2009.5(3).6
賴鼎富、蕭綺、黃婉綺、薛名淳、廖邕 (2022)。三軸加速規應用於身體活動及靜態行為測量使用之敘述性綜論。運動表現期刊,9(2),59-77。 https://doi.org/10.53106/240996512022090902001
顏心彥、范姜顥 (2020)。穿戴式科技對身體活動促進之影響:系統性文獻回顧。體育學報,53(2),143-159。https://doi.org/10.6222/pej.202006_53(2).0001
Amagasa, S., Kamada, M., Sasai, H., Fukushima, N., Kikuchi, H., Lee, I. M., & Inoue, S. (2019). How Well iPhones Measure Steps in Free-Living Conditions: Cross-Sectional Validation Study. JMIR mHealth and uHealth, 7(1), e10418. https://doi.org/10.2196/10418
Bezuidenhout, L., Thurston, C., Hagströmer, M., & Moulaee Conradsson, D. (2021). Validity of Hip and Ankle Worn Actigraph Accelerometers for Measuring Steps as a Function of Gait Speed during Steady State Walking and Continuous Turning. Sensors (Basel, Switzerland), 21(9), 3154. https://doi.org/10.3390/s21093154
Burton, N. W., Haynes, M., van Uffelen, J. G., Brown, W. J., & Turrell, G. (2011). Mid-aged adults' sitting time in three contexts. American journal of preventive medicine, 42(4), 363–373. https://doi.org/10.1016/j.amepre.2011.11.012
Cavero-Redondo, I., Tudor-Locke, C., Álvarez-Bueno, C., Cunha, P. G., Aguiar, E. J., & Martínez-Vizcaíno, V. (2019). Steps per Day and Arterial Stiffness. Hypertension, 73(2), 350-363. https://doi.org/10.1161/hypertensionaha.118.11987
Chow, J. J., Thom, J. M., Wewege, M. A., Ward, R. E., & Parmenter, B. J. (2017). Accuracy of step count measured by physical activity monitors: The effect of gait speed and anatomical placement site. Gait & posture, 57, 199–203. https://doi.org/10.1016/j.gaitpost.2017.06.012
Degroote, L., De Bourdeaudhuij, I., Verloigne, M., Poppe, L., & Crombez, G. (2018). The Accuracy of Smart Devices for Measuring Physical Activity in Daily Life: Validation Study. JMIR Mhealth Uhealth, 6(12), e10972. https://doi.org/10.2196/10972
Dishman, R. K., Saunders, R. P., McIver, K. L., Dowda, M., & Pate, R. R. (2013). Construct validity of selected measures of physical activity beliefs and motives in fifth and sixth grade boys and girls. Journal of Pediatric Psychology, 38(5), 563-576. https://doi.org/10.1093/jpepsy/jst013
Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 1-22. https://doi.org/10.1186/s12966-015-0314-1
Gomersall, S. R., Ng, N., Burton, N. W., Pavey, T. G., Gilson, N. D., & Brown, W. J. (2016). Estimating Physical Activity and Sedentary Behavior in a Free-Living Context: A Pragmatic Comparison of Consumer-Based Activity Trackers and ActiGraph Accelerometry. Journal of Medical Internet Research, 18(9), e239. https://doi.org/10.2196/jmir.5531
Hergenroeder, A. L., Barone Gibbs, B., Kotlarczyk, M. P., Kowalsky, R. J., Perera, S., & Brach, J. S. (2018). Accuracy of Objective Physical Activity Monitors in Measuring Steps in Older Adults. Gerontology & geriatric medicine, 4, 2333721418781126. https://doi.org/10.1177/2333721418781126
Höchsmann, C., Knaier, R., Infanger, D., & Schmidt-Trucksäss, A. (2020). Validity of smartphones and activity trackers to measure steps in a free-living setting over three consecutive days. Physiological measurement, 41(1), 015001. https://doi.org/10.1088/1361-6579/ab635f
Huang, H. C., Chang, S. H., & Yang, X. (2024). Relationship between Sociodemographic and Health-Related Factors and Sedentary Time in Middle-Aged and Older Adults in Taiwan. Medicina(Kaunas,Lithuania), 60(3),444.https://doi.org/10.3390/medicina60030444
Igarashi, Y., Akazawa, N., & Maeda, S. (2018). The required step count for a reduction in blood pressure: a systematic review and meta-analysis. Journal of Human Hypertension, 32(12), 814-824. https://doi.org/10.1038/s41371-018-0100-z
Imboden, M. T., Nelson, M. B., Kaminsky, L. A., & Montoye, A. H. (2018). Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. British journal of sports medicine, 52(13), 844–850. https://doi.org/10.1136/bjsports-2016-096990
Ishikawa-Takata, K., Nakae, S., Sasaki, S., Katsukawa, F., & Tanaka, S. (2021). Age-Related Decline in Physical Activity Level in the Healthy Older Japanese Population. Journal of nutritional science and vitaminology, 67(5), 330–338. https://doi.org/10.3177/jnsv.67.330
Jefferis, B. J., Parsons, T. J., Sartini, C., Ash, S., Lennon, L. T., Papacosta, O., Morris, R. W., Wannamethee, S. G., Lee, I. M., & Whincup, P. H. (2019). Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: does volume of activity matter more than pattern of accumulation? British Journal of Sports Medicine, 53(16), 1013-1020. https://doi.org/10.1136/bjsports-2017-098733
Jones, D., Crossley, K., Dascombe, B., Hart, H. F., & Kemp, J. (2018). VALIDITY AND RELIABILITY OF THE FITBIT FLEX™ AND ACTIGRAPH GT3X+ AT JOGGING AND RUNNING SPEEDS. International journal of sports physical therapy, 13(5), 860–870. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159488/
Kraus, Janz, K. F., Powell, K. E., Campbell, W. W., Jakicic, J. M., Troiano, R. P., Sprow, K., Torres, A., & Piercy, K. L. (2019). Daily Step Counts for Measuring Physical Activity Exposure and Its Relation to Health. Medicine Science in Sports Exercise, 51(6), 1206-1212. https://doi.org/10.1249/mss.0000000000001932
Kraus, Sprow, K., Powell, K. E., Buchner, D., Bloodgood, B., Piercy, K., George, S. M., & Kraus, W. E. (2019). Effects of Physical Activity in Knee and Hip Osteoarthritis: A Systematic Umbrella Review. Medicine Science in Sports Exercise, 51(6), 1324-1339. https://doi.org/10.1249/mss.0000000000001944
Lee, J. A., Williams, S. M., Brown, D. D., & Laurson, K. R. (2015). Concurrent validation of the Actigraph gt3x+, Polar Active accelerometer, Omron HJ-720 and Yamax Digiwalker SW-701 pedometer step counts in lab-based and free-living settings. Journal of sports sciences, 33(10), 991–1000. https://doi.org/10.1080/02640414.2014.981848
Lee, I. M., & Buchner, D. M. (2008). The importance of walking to public health. Medicine Science Sports Exercise, 40(7 Suppl), S512-518. https://doi.org/10.1249/MSS.0b013e31817c65d0
Lee, I. M., Shiroma, E. J., Kamada, M., Bassett, D. R., Matthews, C. E., & Buring, J. E. (2019). Association of Step Volume and Intensity With All-Cause Mortality in Older Women. JAMA Internal Medicine, 179(8), 1105-1112. https://doi.org/10.1001/jamainternmed.2019.0899
Lee, I. M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., & Katzmarzyk, P. T. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. The Lancet, 380(9838), 219-229. https://doi.org/10.1016/s0140-6736(12)61031-9
Leslie, E., Fotheringham, M. J., Owen, N., & Bauman, A. (2001). Age-related differences in physical activity levels of young adults. Medicine and science in sports and exercise, 33(2), 255–258. https://doi.org/10.1097/00005768-200102000-00014
Mañas, A., Del Pozo Cruz, B., Ekelund, U., Losa Reyna, J., Rodríguez Gómez, I., Carnicero Carreño, J. A., Rodríguez Mañas, L., García García, F. J., & Ara, I. (2022). Association of accelerometer-derived step volume and intensity with hospitalizations and mortality in older adults: A prospective cohort study. Journal of Sport and Health Science, 11(5), 578-585. https://doi.org/10.1016/j.jshs.2021.05.004
Memon, Mumtaz & Ting, Hiram & Cheah, Jun-Hwa & Ramayah, T. & Chuah, Francis & Cham, Tat-Huei. (2020). Sample Size for Survey Research: Review and Recommendations. Journal of Applied Structural Equation Modeling, 4(2), 4.https://doi.org/10.47263/JASEM.4(2)01.
Michael, Y. L., Green, M. K., & Farquhar, S. A. (2006). Neighborhood design and active aging. Health Place, 12(4), 734-740. https://doi.org/10.1016/j.healthplace.2005.08.002
Migueles, J. H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nyström, C., Mora-Gonzalez, J., Löf, M., Labayen, I., Ruiz, J. R., & Ortega, F. B. (2017). Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Medicine, 47(9), 1821-1845. https://doi.org/10.1007/s40279-017-0716-0
Mikkelsen, M. K., Berg-Beckhoff, G., Frederiksen, P., Horgan, G., O'Driscoll, R., Palmeira, A. L., Scott, S. E., Stubbs, J., Heitmann, B. L., & Larsen, S. C. (2020). Estimating physical activity and sedentary behaviour in a free-living environment: A comparative study between Fitbit Charge 2 and Actigraph GT3X. PLoS One, 15(6), e0234426. https://doi.org/10.1371/journal.pone.0234426
Ngueleu, A. M., Barthod, C., Best, K. L., Routhier, F., Otis, M., & Batcho, C. S. (2022). Criterion validity of ActiGraph monitoring devices for step counting and distance measurement in adults and older adults: a systematic review. Journal of neuroengineering and rehabilitation, 19(1), 112. https://doi.org/10.1186/s12984-022-01085-5
Nicolella, D. P., Torres-Ronda, L., Saylor, K. J., & Schelling, X. (2018). Validity and reliability of an accelerometer-based player tracking device. PloS one, 13(2), e0191823. https://doi.org/10.1371/journal.pone.0191823
Pan, M.S. & Lin,H.W. (2015). A Step Counting Algorithm for Smartphone Users: Design and Implementation. IEEE Sensors Journal, 15(4), 2296-2305. https://doi.org/10.1109/JSEN.2014.2377193.
Pate, R. R., Pratt, M., Blair, S. N., Haskell, W. L., Macera, C. A., Bouchard, C., Buchner, D., Ettinger, W., Heath, G. W., & King, A. C. (1995). Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. Jama, 273(5), 402-407. https://doi.org/10.1001/jama.273.5.402
Riel, H., Rathleff, C. R., Kalstrup, P. M., Madsen, N. K., Pedersen, E. S., Pape-Haugaard, L. B., & Villumsen, M. (2016). Comparison between Mother, ActiGraph wGT3X-BT, and a hand tally for measuring steps at various walking speeds under controlled conditions. PeerJ, 4, e2799. https://doi.org/10.7717/peerj.2799
Rosenthal, R. (1976). Experimenter effects in behavioral research. https://gwern.net/doc/statistics/bias/1976-rosenthal-experimenterexpectancyeffects.pdf
Samitz, G., Egger, M., & Zwahlen, M. (2011). Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. International Journal of Epidemiology, 40(5), 1382-1400. https://doi.org/10.1093/ije/dyr112
Santos-Lozano, A., Santín-Medeiros, F., Cardon, G., Torres-Luque, G., Bailón, R., Bergmeir, C., Ruiz, J. R., Lucia, A., & Garatachea, N. (2013). Actigraph GT3X: validation and determination of physical activity intensity cut points. International journal of sports medicine, 34(11), 975–982. https://doi.org/10.1055/s-0033-1337945
Schulz, R., Beach, S. R., Ives, D. G., Martire, L. M., Ariyo, A. A., & Kop, W. J. (2000). Association between depression and mortality in older adults - The Cardiovascular Health Study. Archives of Internal Medicine, 160(12), 1761-1768. https://doi.org/10.1001/archinte.160.12.1761
Troiano, R. P., Berrigan, D., Dodd, K. W., Mâsse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine Science in Sports Exercise, 40(1), 181-188. https://doi.org/10.1249/mss.0b013e31815a51b3
Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of adults' participation in physical activity: review and update. Medicine Science in Sports Exercise, 34(12), 1996-2001. https://doi.org/10.1097/00005768-200212000-00020
Tudor-Locke, Craig, C. L., Aoyagi, Y., Bell, R. C., Croteau, K. A., De Bourdeaudhuij, I., Ewald, B., Gardner, A. W., Hatano, Y., Lutes, L. D., Matsudo, S. M., Ramirez-Marrero, F. A., Rogers, L. Q., Rowe, D. A., Schmidt, M. D., Tully, M. A., & Blair, S. N. (2011). How many steps/day are enough? For older adults and special populations. International Journal of Behavioral Nutrition and Physical Activity, 8, 80. https://doi.org/10.1186/1479-5868-8-80
Washburn, R., Chin, M. K., & Montoye, H. J. (1980). Accuracy of pedometer in walking and running. Research Quarterly for Exercise and Sport, 51(4), 695-702. https://doi.org/10.1080/02701367.1980.10609330
Webber, S. C., Magill, S. M., Schafer, J. L., & Wilson, K. C. (2014). GT3X+ accelerometer, Yamax pedometer and SC-StepMX pedometer step count accuracy in community-dwelling older adults. Journal of aging and physical activity, 22(3), 334–341. https://doi.org/10.1123/japa.2013-0002
Webber, S. C., & St John, P. D. (2016). Comparison of ActiGraph GT3X+ and StepWatch Step Count Accuracy in Geriatric Rehabilitation Patients. Journal of aging and physical activity, 24(3), 451–458. https://doi.org/10.1123/japa.2015-0234
Yamamoto, N., Miyazaki, H., Shimada, M., Nakagawa, N., Sawada, S. S., Nishimuta, M., Kimura, Y., Kawakami, R., Nagayama, H., Asai, H., Lee, I. M., Blair, S. N., & Yoshitake, Y. (2018). Daily step count and all-cause mortality in a sample of Japanese elderly people: a cohort study. BMC Public Health, 18(1), 540. https://doi.org/10.1186/s12889-018-5434-5

下載圖示
QR CODE