研究生: |
陳永偉 |
---|---|
論文名稱: |
遊戲策略對等值分數學習之影響 Effects of Gaming Strategy on Sixth Graders’ Learning of Equivalent Fraction Concepts |
指導教授: | 邱貴發 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 遊戲學習策略 、數學等值分數 、遊戲學習態度 、數學學習態度 |
英文關鍵詞: | gaming strategy, equivalent fraction concept, attitude toward gaming, attitude toward msth learning |
論文種類: | 學術論文 |
相關次數: | 點閱:178 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計國小六年級數學領域等值分數單元的學習遊戲「Frac Dash」,檢驗國小學生使用Frac Dash遊戲策略學習等值分數概念的成效、表徵轉換能力、並探討國小學生對Frac Dash學習遊戲與對數學學習的態度。
研究採準實驗設計,研究參與者為台北市某公立小學六年級學生共112名,實驗組57人使用遊戲策略、控制組55人使用虛擬教具策略進行等值分數概念的學習,所有參與研究的六年級學生皆已有「等值分數」的學習經驗。以前測與後測檢證學生的學習成就與表徵轉換能力,以問卷的數據結果歸納學生對Frac Dash與數學學習的態度。
研究結果顯示(1) 使用Frac Dash遊戲學習等值分數的學生之學習成就顯著優於使用虛擬教具的學生(p=.041<.05)。(2) 在文字轉文字、文字轉圖形及圖形轉文字三方面的表徵轉換能力皆有顯著的改變(S→S, p=.000; S→P, p=.000; P→S, p=.000)。(3) 使用Frac Dash遊戲的學生,在遊戲態度中對遊戲的控制與遊戲難度、遊戲元素設計、遊戲故事、遊戲畫面與音樂與遊戲介面設計等面向持正向看法,平均介於3.04~3.74之間;數學學習態度中對遊戲策略、遊戲回饋與整體態度皆持正向看法,平均介於3.14~3.70之間。
The purpose of this research was to develop a mathematics learning game named “Frac Dash” focusing on equivalent fraction concept learning, and to examine students’ performance and representational fluency in equivalent fraction. Students’ attitude toward Frac Dash game and toward mathematical learning were also analyzed.
Quasi-experiment design was implemented. There were 55 students in the control group using the virtual manipulative, while 57 students in the experimental group using gaming strategy to learn the equivalent fraction concepts. Both groups of students already have prior knowledge about equivalent fraction concepts. Data sources included a pretest and a posttest of students’ equivalent fraction concepts and a student attitude survey.
The results indicated that (1) Students’ performance using Frac Dash game were better than students’ performance using virtual manipulative (p=.041<.05). (2) Experimental group has significant improvement on the transformation from symbolic(S) to symbolic representation, transformation from pictorial(P) to symbolic representations and translations from pictorial to pictorial representations (S→S, p=.000; S→P, p=.000; P→S, p=.000). (3) According to the survey, students gave positive feedback to math game. Students also had positive attitudes toward using the Frac dash game to learn fraction concepts.
尤志弘、簡清華(2008)。國小五年級學童在九年一貫數學課程改革下 分數概
念與運算能力的表現之比較研究。屏東教大科學教育,27,16-34
王智弘(2006)。多方塊虛擬教具的開發與教學研究。國立交通大學理學院網
路學習學程碩士論文,未出版,新竹市。
王學仁(2009)。數位遊戲對國小高年級學童空間能力發展影響之研究。國立臺
南大學數位學習科技系數位學習科技碩士在職專班碩士論文,未出版,臺南市。
江玉玲(2010)。數學虛擬教具對等值分數概念學習的影響。國立臺灣師範大
學資訊教育學系,未出版,台北市。
江佩穎(2011)。使用數位遊戲提升國中八年級學生學習成效之探究─以圓的性
質為例。國立臺北教育大學數學暨資訊教育學系研究所碩士論文,未出版,
台北市。
任欣垚(2012)。數位學習環境融入體驗式學習策略與先備知識對國小學生質
因數概念學習之影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,台北市。
呂玉琴(1991a)。國小學生的分數概念:1/2 vs. 2/4。國民教育,31(11, 12),10-15。
呂玉琴 (1991b)。分數概念:文獻探討。台北師院學報,4,573-606。
呂玉琴(1996)。國小教師的分數知識。台北師院學報,9,427-460。
呂玉琴、李源順、劉曼麗、吳毓瑩(2009)。國小分數與小數的教學、學習與
評量。臺北巿:五南出版社。
吳春進(2009)。電腦遊戲對國小學童空間能力發展影響之研究。亞洲大學資
訊工程學系碩士在職專班碩士論文,未出版,臺中市。
吳素芬(2009)。圖形組體教學對國小四年級學生分數概念學習成效之研究。
國立台北教育大學數學教育研究所碩士論文,未出版,台北市。
邵明宏(2007)。使用電腦遊戲模式學習國小數學之探究--以數與計算單元為例。
中興大學資訊科學系所碩士論文,未出版。
林福來、黃敏晃、呂玉琴(1996)。分數啟蒙的學習與教學之發展性研究。科學
教育學刊,4(2),161-196。
洪郁雯、楊德清(2006)。多元課室內數學學習問題之個案研究─以新台灣之子
為例。中華民國第二十二屆科學教育學術研討會發表之論文,台北市。
袁媛 ( 2007 )。國中小數學虛擬教具的研發與教學研究。行政院國家科學委員
會專題研究成果報告(編號:NSC95-2520-S-033-003),未出版。
袁媛、陳國龍、張世明(2007)。萬用揭示板(Magic Board)-國小特教老師的數
學教學好幫手。特教論壇,3,1-13。
莊大慶(2007)。國小學童等值分數概念發展之研究。國立屏東教育大學教育
心理與輔導學系碩士論文,未出版,屏東市。
教育部(2008)。97年國民中小學課程綱要。台北市:教育部。
教育部國家教育研究院。臺灣學生學習成就評量資料庫電子報(第一期)。取自
http://tasa.naer.edu.tw/uploadfiles/file/TASAePaper/TASANEWS20091101.pdf
張玉琪(2009)。虛擬教具對於國中學生學習鑲嵌圖形之影響。國立交通大學
理學院網路學習學程碩士論文,未出版,新竹市。
張春興(2006)。張氏心理學辭典。台北市:東華出版社。
張春興(2008)。教育心理學:三化取向的理論與實踐-重修二版。台北市:東
華出版社。
張熙明、楊德清(2007)。國小五年級學童分數表徵教學之研究。台灣數學教
師電子期刊,10,62-71。
黃彥齊(2012)。運用虛擬教具對國小學習障礙學生等值分數表徵轉換教學成
效之研究。國立台南大學特殊教育學系碩士論文,未出版,台南市。
黃憲銘(2006)。以格子謎題遊戲式輔助小學數學技巧熟練之數位學習設計與
實作。國立交通大學理學院碩士在職專班網路學習學程碩士論文,未出版,新竹市。
陳明宏、呂玉琴(2005)。國小四年級學童分數概念之診斷教學研究。國立臺北
教育大學學報,18(2),1-32。NSC 91-2522-S-152-002。
彭海燕(1998)。國小兒童等值分數概念了解之研究。國立台北師範學院國民
教育研究所碩士論文,未出版,台北市。
湯錦雲 (2002)。國小五年級學童分數概念與運算錯誤類型之研究。國立屏東師
範學院數理教育研究所碩士論文,未出版,屏東市。
楊壬孝(1989)。國中小學生分數概念的發展。行政院國家科學委員會專題研
究計劃成果報告,未發表。
楊惠雯(2010)。虛擬教具應用於國中學生學習多項式展開與因式分解之影響。
國立交通大學理學院科技與數位學習學程碩士論文,未出版,新竹市。
詹婉華、呂玉琴(2004)。國小高年級學童分數概念量表之設計研究。科學教育
學刊,12(2),241-263。
鄭千佑 (2008)。虛擬教具對國小學生等值分數彈性思考表現之影響。國立臺灣
師範大學資訊教育研究所碩士論文,未出版,台北市。
鄭凱育(2000)。電腦遊戲對國小四年級學童二維空間概念發展影響之研究。中
國文化大學生活應用科學研究所碩士論文,未出版,臺北市。
鄭富美(2008) 虛擬教具教學對學生學習成效之後設分析。國立交通大學網路學
習碩士專班碩士論文,未出版,新竹市。
彭健彰(2008)。虛擬教具應用於國小四年級重量概念教學之影響研究。國立
交通大學理學院網路學習學程碩士論文,未出版,新竹市。
蔣志邦(1994)。由表徵的觀點探討新教材數與計算活動的設計。國民小學數
學科新課程概說(低年級)(60-76)。臺北縣:台灣省國民學校教師研習會。
賴佩以(2006)。遊戲教學對七年級學生數學學習信念、學習動機與學習成就之
研究。大葉大學教育專業發展研究所碩士論文,未出版,彰化縣。
劉秋木 (2002)。國小數學科教學研究。台北市:五南出版社。
劉素君(2009)。數位遊戲對國小高年級學童推理能力之影響。國立臺南大學數
位學習科技系數位學習科技碩士在職專班碩士論文,未出版,臺南市。
劉景聰(2008)。虛擬教具融入國小六年級分數補救教學成效之研究。國立交
通大學理學院網路學習碩士專班碩士論文,未出版,新竹市。
劉耀聰(2008)。數位遊戲軟體應用於國小數學低成就學生補救教學之探討。南
華大學資訊管理學研究所碩士論文,未出版,彰化縣。
蕭登仲、謝哲仁、蔡玉花 (2004)。國小學生在動態多重表徵視窗環境下學習等
值分數成效之研究。南師學報,38(1),77-106。
謝哲仁、蕭登仲 (2005)。動態視覺化等值分數電腦活動補救教學設計,教學科
技與媒體 72,49-59
羅怡帆(2012)。體驗式遊戲策略與數學學習信心對國中生比例式課程學習之
影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,台北市。
Akinsola, M., & Animasahun, I. (2007). The effect of simulation-games environment
on students achievement in and attitudes to mathematics in secondary schools. The Turkish Online Journal of Educational Technology, 6(3), Article 11. Retrieved April 20, 2012, from http://www.tojet.net/
Aufschnaiter, V.S., Prum, R., & Schwedes, H.(1984). Play and play orientation in
physics education. Naturwissenschaften in Unterricht-P/C, 32,258-263
Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational number concepts.
In R. Lesh, & M. Landau, (Eds.), Acquisition of Mathematics Concepts and Processes (pp.91-126). New York: Academic Press.
Behr, M. & Post, T. (1992). Teaching rational number and decimal concepts. In T.
Post (Ed.), Teaching mathematics in grades K-8: Research-based methods (pp. 201-248). Boston: Alley & Bacon.
Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence of
rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15(5), 323-341.
Behr, M. J., Wachsmuth, I., & Post, T. R. (1985). Construct a sum: A measure of
children’s understanding of fraction size. Journal for Research in Mathematics
Education, 16(2), 120-131.
Behr, M. J., Wachsmuth, I., & Post, T. R.(1988). Construct a sum: A measure of
children’s understanding of fraction size. Journal for research in Mathematics Education, 16(2), 120-131.
Booth, L.R. (1984). Algebra: Children's strategies and errors. Windsor: NFER
Nelson.
Bergeron, M. J., & Herscovics, H.(1987). Unit Fractions of a Continuous Whole.
The 11th International Conference for the Psychology of Mathematics Education.
Brenner, M. E., Herman, S., Ho, H. Z. & Zimmer, J. M. (1999). Cross-National
comparison of representational competence. Journal for Research in Mathematics Education, 30(5), 541-547.
Brom, C., Klement, D., & Preuss, M. (2011). Are educational computer
micro-games engaging and effective for knowledge acquisition at high-school? A quasi-experimental study. Computers & Education, 57, 1971-1988. doi: 10.1016/j.compedu.2011.04.007.
Bruner, J. S.(1966). Toward a theory of instruction. Cambridge, MA: Harvard
University.
Bruner, J. S. (1972). The nature and uses of immaturity. American Psychologist, 27,
687-708.
Cameron, B., & Dwyer, F. (2005). The effects of online gaming, cognition and
feedback type in facilitating delayed achievement of different learning objectives. Journal of Interactive Learning Research, 16(3), 243-258.
Chun-Yi Lee, Ming-Puu Chen(2011). A computer game as a context for non-routine
mathematical problem solving The effects of type of question prompt and level of prior knowledge. Computers & Education 52(3): 530-542
Corsi, T. M., Boyson, S., Verbraeck, A., Van Houten, S., Han, C., & Macdonald, J.
R. (2006). The real-time global supply chain game: new educational tool for developing supply chain management professionals. Transportation Journal, 45(3), 61-73.
Covington, M. V. (1984). The Self-Worth Theory of Achievement Motivation:
Findings and Implications. The Elementary School Journal, 85(1), 5-20. doi: 10.1086/461388
Charles, D., & McAlister, M. (2004). In M. Rauterberg (Ed.), Integrating ideas
about invisible playgrounds from play theory into online educational digital games (pp. 598-601). doi:10.1007/978-3-540-28643-1_79
Cramer K. A., Post T. R., & delMas R. C. (2002). Initial fraction learning by fourth-
and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2), 111-144.
Dempsey, J. V., Rasmussen, K., & Lucassen. B. (1994). Instructional gaming:
implication for technology. (ERIC Document Reproduction Service No. EJ368345).
Dreyfus, T. & Eisenberg, T. (1996). On different facets of mathematical thinking. In
R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp.253-284). Mahwah, NJ: Erlbaum.
Drickey, N. A. (2000). A comparison of virtual and physical manipulatives in
teaching virtualization and spatial reasoning to middle school mathematics students. Unpublished doctoral dissertation, Utah State University.
Egenfeldt-Nielsen, S. (2005). Can Education and Psychology Join Forces. The
Clash of Benign and Malign Learning from Computer Games. Nordicom Review.
Federation of American Scientists. Summit on Educational Games -- Harnessing the
power of video games for learning. Federation of American Scientists, Washington, DC, 2006.
Goins, K. B. (2001). Comparing the effects of visual and algebra tile manipulative
methods on student skill and understanding of polynomial multiplication. South Carolina University.
Goldin, G., & Shteingold, N. (2001). Systems of representations and the
development of mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics (pp. 1-23). Reston, VA: National Council of Teachers of Mathematics.
Gros, B. (2007). Digital games in education: The design of game-based learning
environment. Journal of Research on Technology in Education, 40(1), 23-38.
Hays, T.R. (2005). The effectiveness of instructional games: A literature review and
discussion. Technical report 2005-004. Retrivied August 8, 2012 from http://handle.dtic.mil/100.2/ADA441935.
Highfield, K., & Mulligan, J. T. (2007). The role of dynamic interactive
technological tools in preschooler's mathematical patterning. In J. Watson & K. Beswick (Eds.), Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia, Hobart (Vol. 1, pp. 372-381). Adelaide: MERGA.
Hogle J. G.,(1996).Considering Games as Cognitive Tools: In Search of Effective
Edutainment. University of Georgia Department of Instructional Technology.
Holland, W., Jenkins, H., & Squire, K. (2002). In B. Perron, & M. Wolf (Eds.),
Video game theory. Routledge. Retrieved August 8, 2012 from http://www.educationarcade.org/gtt/.
Izydorczak, A. E. (2003). A study of virtual manipulatives for elementary
mathematics. Unpublished doctoral dissertation, State University of New York-Buffalo.
Ke, F., & Grabowski, B. (2007). Game playing for mathematics learning:
cooperative or not? British Journal of Educational Technology, 38(2), 249-259.
Ke, F. (2008). Computer games application within alternative classroom goal
structures: Cognitive, metacognitive, and affective evaluation. Educational Technology Research and Development, 56(5), 539-556.
Kebritchi, M., Hirumi A., & Bai H. (2010)The effects of modern mathematics
computer games on mathematics achievement and class motivation. Computers & Education, 55(2), 427-443.
Kebritchi, M., & Hirumi, A. (2008). Examining the pedagogical foundations of
modern educational computer games to inform research and practice. Computers &Education, 51(4), 1729-1743.
Kieren, T. E. (1976). Rational number on the number line. Mathematics for the
Elementary School. Grade 5: Teacher’s Commentary, part П, Yale University.
Klawe, M. M. (1998). When does the use of computer games and other interactive
multimedia software help students learn Mathematics?.Unpublished manuscript Retrieved September 10, 2012 . from http://www.cs.ubc.ca/nest/egems/reports/NCTM.doc.
Kolb, D. A. (1976) The Learning Style Inventory: Technical Manual, Boston, Ma.:
McBer.
Kolb, D. A. (1984). Experimental learning. Englewood Cliffs NJ: Prentice-Hall.
Lesh, R. (1979), Mathematical learning disabilities: Considerations for
identification, diagnosis, and remediation. In R. Lesh, D. Mierkiewicz & M. G. Kantowski (Eds.), Applied mathematical problem solving (pp.111-175), Columbus, OH: ERIC/SMEAC.
Lesh, R., Landau, M., & Hamilton, E. (1983). Conceptual models in applied
mathematical problem solving research. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts & processes (pp. 263-343). New York: Academic Press.
Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among
representations in mathematics learning and problem solving. In C. Janvier, (Ed.), Problems of Representations in the Teaching and Learning of Mathematics (pp. 33-40). Hillsdale, NJ: Lawrence Erlbaum.
Lim, C. P., Nonis, D., & Hedberg, J. (2006). Gaming in a 3-D multiuser virtual
environment: engaging students in science lessons. British Journal of Educational Technology, 37(2), 211-231.
Lopez-Morteo, G., & Lopez, G. (2007). Computer support for learning mathematics:
a learning environment based on recreational learning objects. Computers & Education, 48(4), 618-641.
Mitchell, A., & Savill-Smith, C. (2004). The use of computer games for learning.
Retrieved September 9.2012 from http://www.m-learning.org/archive/docs/The%20use%20of%20computer%20and%20video%20games%20for%20learning.pdf.
Moreno, R. (2002). Who learns best with multiple representations? Cognitive theory
implications for individual differences in multimedia learning. ED-MEDIA 2002 Proceedings (pp. 1380-1385). Charlottesville, VA: AACE Press.
Malone, T. W., What makes things fun to learn? A study of intrinsically motivating
computer games. Dissertation Abstracts International, 41, 1955B,1980.
Malone, T. W., & Lepper, M. R., Making learning fun: A taxonomy of intrinsic
motivations for learning. In R. E. Snow & M. J. Farr (Eds.),Aptitude, learning, and instruction: III. Cognition and affective process analysis. Hillsdale, NJ: Erlbaum, 1983.
Moreno, R. (2002). Who learns best with multiple representations? Cognitive theory
implications for individual differences in multimedia learning. Retrieved September 9, 2012 from http://www.eric.ed.gov/PDFS/ED477070.pdf.
Moyer, P.S., & Bolyard, J.J. (2002). Exploring representation in the middle grades:
Investigations in geometry with virtual manipulatives. The Australian Mathematics Teacher, 58(1), 19-25.
Moyer, P. S., Bolyard, J.J., & Spikell, M.A. (2002). What are virtual manipulatives?
Teaching Children Mathematics, 8(6), 372-377.
Moyer, P.S., Salkind, G., & Bolyard, J.J. (2008). Virtual manipulatives used by K-8
teachers for mathematics instruction: Considering mathematical, cognitive, and pedagogical fidelity. Contemporary Issues in Technology and Teacher Education, 8(3), 202-218.
National Council of Teachers of Mathematics. (2000). Principles and standards for
school mathematics: An overview. Reston, VA: Author.
Ning, T. C. (1992). Children's meanings of fractional number words. Unpublished
doctoral dissertation . The University of Georgia, Athens, GA.
NMC(2012), The NMC Horizon Report: K-12 Edition. New Media Consortium.
Olkun, S. (2003). Comparing computer versus concrete manipulatives in learning 2D
geometry. The Journal of Computers in Mathematics and Science Teaching, 22(1), 43-56.
Papastergiou, M. (2009). Digital game-based learning in high school computer
science education: impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1-12.
Raphael, D., & Wahlstrom, M. (1989). The influence of instructional aids on
mathematics achievement. Journal for Research in Mathematics
Education, 20(2), 173-190.
Piaget, J.(1962). Play, Dreams and Imitation in Childhook. New York: Norton.
Piaget, J. (1983). "Piaget's theory". In P. Mussen (ed). Handbook of Child
Psychology. 4th edition. Vol. 1. New York: Wiley.
Post, T., Behr, M., & Lesh, R. (1982). Interpretations of Rational Number Concepts.
In L. Silvey & J. Smart (Eds.), Mathematics for Grades 5-9, 1982 NCTM Yearbook (pp. 59-72). Reston, Virginia: National Council of Teachers of Mathematics.
Prensky, M. (2007). Digital Game-Based Learning. New York: McGraw-Hill.
Reimer, K., & Moyer, P. S. (2005). Third graders learn about fractions using virtual
manipulatives: A classroom study. Journal of Computers in Mathematics and Science Teaching, 24(1), 5-25.
Raphael, D., & Wahlstrom, M. (1989). The influence of instructional aids on
mathematics achievement. Journal for Research in Mathematics Education, 20(2), 173-190.
Rosas, R., Nussbaum, M., Cumsille, P., Marianov, V., Correa, M., Flores, P., et al.
(2003). Beyond nintendo: design and assessment of educational video games for first and second grade students. Computers & Education, 40(1), 71-94.
Rowan, T. E., Payne, J. N., & Towsley, A. E. (1990). Implementing the standards:
Implica-tions of NCTM’s standards for teaching fractions and decimals. Arithmetic Teacher, 37(8), 23-26.
Saenz-Ludlow, A. (1994). Michael’s Fraction Scheme. Journal of Research in
Mathematics Education, 25(1), 50-85.
Saenz-Ludlow, A. (1995). Ann’s fraction schemes. Educationl Studies in
Mathematics Education, 28(2), 101-132.
Sayeski, K. L. (2008). Virtual manipulatives as an assistive technology support for
students with high-incidence disabilities. Journal of Special Education Technology, 23(1), 47-53.
Sedighian, K. and Sedighian, A. S. (1996). Can educational computer games help
educators learn about the psychology of learning mathematics in children? In 18th Annual Meeting of the International Group for the Psychology of Mathematics Education - the North American Chapter, Florida, USA.
Smith, L. (2006). The impact of virtual and concrete manipulatives on algebraic
understanding. George Mason University.
Sowell, E. J. (1989). Effect of manipulative materials mathematics instruction.
Journal for Research in Mathematics Education, 20(5), 498-505.
Steen, K., Brooks, D., & Lyon, T. (2006). The impact of virtual manipulatives on
first grade geometry instruction and learning. Journal of Computers in Mathematics and Science Teaching, 25(4), 373-391.
Steffe, L. P. (2002). A new hypothesis concerning children’s fractional knowledge.
Journal of Mathematical Behavior, 20, 267–307.
Suh, J. M. (2005). Third Graders’ Mathematics Achievement and Representation
Preference Using Virtual and Physical Manipulatives for Adding Fractions and Balancing Equations. Unpublished doctoral dissertation, George Mason University, Fairfax, Virginia.
Suh, J. M., & Moyer, P. S. (2007). Developing students' representational fluency
using virtual and physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26(2), 155-173.
Vance,J.H.(1992).Understanding equivalence:A number by and other name. School
Science and Mathematics, 92(5), 263-266.
Van Eck, R. (2007). Six ideas in search of a discipline. In B.E. Shelton & D.A. Wiley
(Eds.), The design and use of simulation computer games in education (pp.31-56). Rotterdam: Sense Publishers.
Verharen, S. Action Research: Do test scores ıncrease when using virtual
manipulatives? Retrieved August 28, 2012, from http://www.susan.verharen.us/portfolio/
Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright,
M. (2006). Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing Research, 34, 229–243.
Vygotsky, L.S. (1976). Play and its role in the mental development of the child.
Soviet Psychology, 5, 6-18.
Yip, F. W. M., & Kwan, A. C. M. (2006). Online vocabulary games as a tool for
teaching and learning English vocabulary. Educational Media International, 43(3), 233-249.