簡易檢索 / 詳目顯示

研究生: 甘浩廷
Kan, Hao-Ting
論文名稱: 亞熱帶森林生態系附生植物營養限制之研究
A Study on Epiphyte’s Nutrient Limitation in a Subtropical Forest Ecosystem
指導教授: 林登秋
Lin, Teng-Chiu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 67
中文關鍵詞: 營養限制施肥實驗附生植物
英文關鍵詞: nutrient limitation, epiphytes, fertilization
DOI URL: http://doi.org/10.6345/THE.NTNU.SLS.010.2019.D01
論文種類: 學術論文
相關次數: 點閱:111下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 限制生態系初級生力的因子相當多,除了降雨和溫度之外,營養元素也是常見影響森林生態系生產力的重要因子,溫帶及熱帶地區已有相當多營養限制相關的研究,這些研究指出溫帶森林初級生產力主要受到氮的限制,而熱帶森林則是受到磷的限制;然而亞熱帶地區森林之營養限制卻鮮少有實驗研究,使我們對於全球生態系之營養循環尚未有全面的了解。此外亞熱帶、熱帶地區森林富含多樣的附生植物,其所含的營養占森林總營養相當大的一部分,為森林營養循環中重要的一環,然而附生植物是否與一般地生植物有著相同的營養限制,而可作為森林生態系營養限制之指標物種,我們無從得知。本研究於亞熱帶氣候的台灣福山試驗林,採集台灣巢蕨及巢蕨,及地生與附生之腎蕨,共三種植物種植於溫室內,並透過施肥實驗,添加氮、磷、及加氮又加磷及未施肥之控制組,共四種處理,觀察附生植物地上部生物量的增益,以檢驗附生植物受哪項營養元素所影響;同時觀察不同生長方式腎蕨地上部生物量是否有差異,以評估附生植物之營養限制是否和地生植物一樣,進而做為亞熱帶森林營養限制之指標。實驗結果顯示,施肥處理對兩巢蕨之地上部生物量變化皆有顯著的影響,以巢蕨而言,加氮加磷組的地上部生物量變化顯著高於加氮組、控制組,以加磷組的地上部生物量變化增加最少;而台灣巢蕨同樣以加氮加磷處理組的地上部生物量變化高於加氮組,並高於其他兩處理組。附生型腎蕨的檢測結果顯示三種肥料添加方式之間沒有顯著的差異,但均顯著的高於控制組的地上部生物量變化;地生型腎蕨地上部生物量變化則是以加磷處理組顯著的高於加氮加磷組並高於加氮與控制組。由上述結果可見,台灣亞熱帶地區森林內附生植物的營養限制在不同物種間並不一致,且並非受到單一元素所限制,可能同時受到氮、磷兩元素限制其生長。而本次的實驗結果也顯示,地生與附生生長類型之植被有著相同之營養限制。

    There are several mechanisms to affect forest ecosystem, these mechanisms change forest ecosystem’s structure, microenvironment, nutrient cycling in different ways. Nutrient limitation is one of the famous mechanism that have been well-studied through fertilization experiment in last twenty years, and studies have shown that temperate forest limit by nitrogen and tropical forest limit by phosphorus, but there are few researches in subtropical area. And it’s critical to know nutrient limitation in subtropical forest in order to understanding global nutrient cycling.
    Epiphytes play an important role in forest ecosystem, especially for tropical and subtropical forest. They take big part of nutrient capital in forest ecosystem even though their biomass is low. In general, studies show that epiphyte’s limiting factor is water, but study in Hawaii shows different result, they said epiphyte share the same limiting nutrient with plant which grow on ground, and it also display epiphytes have faster reaction after fertilization because their short life cycle. So we don’t really know about epiphyte’s limiting factor, especially in subtropical forest.
    Our studies try to figure out nutrient limitation in subtropical forest through fertilization experiment in the greenhouse. We chose two common epiphytes and another epiphyte which can grow on tree and ground, fertilize these plants with nitrogen and phosphorus in four treatments in the greenhouse to test the nutrient limitation in subtropical forest ecosystem.
    We use last data build a regression model, then estimate the real aboveground biomass with leaf dry weight, average leaf length, total leaf number each month. The Asplenium antiquum analysis shows aboveground biomass in fertilization with nitrogen and phosphorus are significant higher than other treatment; and aboveground biomass of Asplenium nidus L. in nitrogen and phosphorus treatment are also higher than nitrogen treatment and the others. Nephrolepidaceae’s analysis in epiphyte form show there are no differences between treatments with fertilization, but their aboveground biomass are all significant higher than control; the aboveground biomass of Nephrolepidaceae which grow on ground in phosphorus treatment is higher than the nitrogen and phosphorus treatment and the others. Our results show epiphytes in subtropical forest in Taiwan are not limited by single element but co-limited by several elements like nitrogen and phosphorus. Our results also show epiphytes share the same nutrient limitation with plant which grow on ground.

    摘要 5 Abstract 7 第一章、研究背景與目的 9 第一節、森林生態系之重要性 9 第二節、影響森林生態系之機制 11 第二章、研究動機 15 第一節、亞熱帶森林生態系營養限制研究現況 15 第二節、附生植物的重要性及營養限制 16 第三節、台灣營養限制研究現況 18 第三章、研究問題 19 第四章、研究方法 20 第一節、研究地點與物種 20 第二節、研究實施與步驟 22 第五章、結果 30 第一節、生物量與葉片數量及長度間的關係 30 第二節、施肥處理對各物種生物量變化之檢測 32 第三節、元素分析 37 第六章、討論 47 第一節、亞熱帶植物之營養限制之情況 47 第二節 影響植物生長之其他因素 55 第七章、結論 57 第八章、參考文獻 58

    Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., ... & Stoddard, J. L. 2003. Is nitrogen deposition altering the nitrogen status of northeastern forests?. AIBS Bulletin, 53(4), 375-389.
    Adams, M. A., & Attiwill, P. M. 1986. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia. Plant and Soil, 92(3), 341-362.
    Aerts, R., & Chapin III, F. S. 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In Advances in ecological research (Vol. 30, pp. 1-67). Academic Press.
    Attiwill, P. M., and M. A. Adams. 1993. Nutrient cycling in forests. New Phytologist 124:561-582.
    Benner, J. W., & Vitousek, P. M. 2007. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters, 10(7), 628-636.
    Belsky, A. J. 1986. Does herbivory benefit plants? A review of the evidence. The American Naturalist, 127(6), 870-892.
    Benzing, D. H. 2008. Vascular epiphytes: general biology and related biota. Cambridge University Press.
    Berg, B. 2000. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133(1-2), 13-22.
    Berg, B., Berg, M. P., Bottner, P., Box, E., Breymeyer, A., De Anta, R. C., ... & Madeira, M. 1993. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20(3), 127-159.
    Bracken, M. E., Hillebrand, H., Borer, E. T., Seabloom, E. W., Cebrian, J., Cleland, E. E., ... & Smith, J. E. 2015. Signatures of nutrient limitation and co‐limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos, 124(2), 113-121.
    Boahene, K. 1998. The challenge of deforestation in tropical Africa: reflections on its principal causes, consequences and solutions. Land Degradation & Development, 9(3), 247-258.
    Boardman, N. T. 1977. Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology, 28(1), 355-377.
    Bracken, M. E., Hillebrand, H., Borer, E. T., Seabloom, E. W., Cebrian, J., Cleland, E. E., ... & Smith, J. E. 2015. Signatures of nutrient limitation and co‐limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos, 124(2), 113-121.
    Bruijnzeel, L. A., Eugster, W., & Burkard, R. 2005. Fog as an input to the hydrological cycle. Encyclopaedia of Hydrological Sciences, 559-582.
    Canfield, R. H. 1939. The effect of intensity and frequency of clipping on density and yield of black grama and tobosa grass(Vol. 676). US Dept. of Agriculture.
    Chang, K. H., Jeng, F. T., Tsai, Y. L., & Lin, P. L. 2000. Modeling of long-range transport on Taiwan's acid deposition under different weather conditions. Atmospheric Environment, 34(20), 3281-3295.
    Chapin III, F. S. 1980. The mineral nutrition of wild plants. Annual review of Ecology and Systematics, 11(1), 233-260.
    Choudhury, D. 1984. Aphids and plant fitness: a test of Owen and Wiegert's hypothesis [honeydew, yield reduction]. Oikos (Denmark).
    Craine, J. M., Morrow, C., & Stock, W. D. 2008. Nutrient concentration ratios and co‐limitation in South African grasslands. New Phytologist, 179(3), 829-836.
    Cramer, W., Bondeau, A., Schaphoff, S., Lucht, W., Smith, B., & Sitch, S. 2004. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359(1443), 331-343.
    DeFries, R. S., & Silver, C. S. 1992. One earth, one future: Our changing global environment. National Academies Press.
    Detling, J. K., & Dyer, M. I. 1981. Evidence for potential plant growth regulators in grasshoppers. Ecology, 62(2), 485-488.
    Dixon, R. K., A. Solomon, S. Brown, R. Houghton, M. Trexier, & J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
    Dolman, A. J., Gash, J. H. C., Goutorbe, J. P., Kerr, Y., Lebel, T., Prince, S. D., & Stricker, J. N. M. 1997. The role of the land surface in Sahelian climate: HAPEX-Sahel results and future research needs. Journal of Hydrology, 188, 1067-1079.
    Ewers, R. M., Boyle, M. J., Gleave, R. A., Plowman, N. S., Benedick, S., Bernard, H., ... & Davies, R. G. 2015. Logging cuts the functional importance of invertebrates in tropical rainforest. Nature Communications, 6, ncomms7836.
    Falkengren-Grerup, U., & Diekmann, M. 2003. Use of a gradient of N-deposition to calculate effect-related soil and vegetation measures in deciduous forests. Forest Ecology and Management, 180(1-3), 113-124.
    Fay, P. A., Prober, S. M., Harpole, W. S., Knops, J. M., Bakker, J. D., Borer, E. T., ... & Adler, P. B. 2015. Grassland productivity limited by multiple nutrients. Nature Plants, 1(7), 15080.
    Feller, I. C., McKee, K. L., Whigham, D. F., & O'neill, J. P. 2003. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry, 62(2), 145-175.
    Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., ... & Huasco, W. H. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172(3), 889-902.
    Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W., ... & Stottlemyer, R. 1998. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8(3), 706-733.
    Gehrig‐Downie, C., Obregón, A., Bendix, J., & Gradstein, S. R. 2011. Epiphyte biomass and canopy microclimate in the tropical lowland cloud forest of French Guiana. Biotropica, 43(5), 591-596.
    Gerrish, G., Mueller-Dombois, D., & Bridges, K. W. 1988. Nutrient limitation and Metrosideros forest dieback in Hawaii. Ecology, 69(3), 723-727.
    Greeney, H. F. 2001. The insects of plant-held waters: a review and bibliography. Journal of Tropical Ecology, 17(2), 241-260.
    Güsewell, S., & Koerselman, W. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5(1), 37-61.
    Hölscher, D., Köhler, L., van Dijk, A. I., & Bruijnzeel, L. S. 2004. The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology, 292(1-4), 308-322.
    Hamilton, J. G., DeLucia, E. H., George, K., Naidu, S. L., Finzi, A. C., & Schlesinger, W. H. 2002. Forest carbon balance under elevated CO 2. Oecologia, 131(2), 250-260.
    Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M. E., ... & Smith, J. E. 2011. Nutrient co‐limitation of primary producer communities. Ecology Letters, 14(9), 852-862.
    Hedwall, P. O., Bergh, J., & Brunet, J. 2017. Phosphorus and nitrogen co-limitation of forest ground vegetation under elevated anthropogenic nitrogen deposition. Oecologia, 185(2), 317-326..
    Hilbert, D. W., Swift, D. M., Detling, J. K., & Dyer, M. I. 1981. Relative growth rates and the grazing optimization hypothesis. Oecologia, 51(1), 14-18.
    Hou, E., Chen, C., McGroddy, M. E., & Wen, D. 2012. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PloS One, 7(12), e52071.
    Hsu, C. C., Horng, F. W., & Kuo, C. M. 2002. Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology, 18(5), 659-670.
    Hsu, R., & Wolf, J. H. 2009. Diversity and phytogeography of vascular epiphytes in a tropical–subtropical transition island, Taiwan. Flora-Morphology, Distribution, Functional Ecology of Plants, 204(8), 612-627.
    Huang, G. Z., & Lin, T. C. 2016. Response of two epiphyte species to nitrogen and phosphorus fertilization at a humid subtropical rainforest in northeastern Taiwan. Taiwan Journal of Forest Science, 31(4), 293-304.
    Jia, Y., Yu, G., He, N., Zhan, X., Fang, H., Sheng, W., ... & Wang, Q. 2014. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 4, 3763.
    Kenk, G., & Fischer, H. 1988. Evidence from nitrogen fertilisation in the forests of Germany. Environmental Pollution, 54(3-4), 199-218.Koerselman, W., and A. F.
    Koerselman, W., & Meuleman, A. F. 1996. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1441-1450.
    Kreft, H., Köster, N., Küper, W., Nieder, J., & Barthlott, W. 2004. Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. Journal of Biogeography, 31(9), 1463-1476.
    Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. 2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23(2), 95-103.
    Lam, P. K., & Dudgeon, D. 1985. Fitness implications of plant-herbivore «mutualism». Oikos, 44(2), 360-361.
    Lasso, E., & Ackerman, J. D. 2013. Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment. Oecologia, 171(1), 165-174.
    LeBauer, D. S., & Treseder, K. K. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371-379.
    Lin, T. C., Hamburg, S. P., Lin, K. C., Wang, L. J., Chang, C. T., Hsia, Y. J., ... & Liu, C. P. 2011. Typhoon disturbance and forest dynamics: lessons from a northwest Pacific subtropical forest. Ecosystems, 14(1), 127-143..
    Li, Y., Tian, D., Yang, H., & Niu, S. 2018. Size‐dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32(1), 95-105.
    Martinelli, L. A., Piccolo, M. C., Townsend, A. R., Vitousek, P. M., Cuevas, E., McDowell, W., ... & Treseder, K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry, 46(1-3), 45-65.
    McNaughton, S. J., Banyikwa, F. F., & McNaughton, M. M. 1997. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science, 278(5344), 1798-1800.
    Mirmanto, E., J. Proctor, J. Green, & L. Nagy. 1999. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 354, 1825-1829.
    Nadkarni, N. M. 1981. Canopy roots: convergent evolution in rainforest nutrient cycles. Science, 214(4524), 1023-1024.
    Nadkarni, N. M. 1984. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica, 249-256.
    Naka, K., & Yoneda, T. 1984. Community dynamics of evergreen broadleaf forests in southwestern Japan. The botanical magazine, 97(3), 275-286.
    Niinemets, Ü., & Kull, K. 2005. Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils. Acta Oecologica, 28(3), 345-356.
    Olde Venterink, H., Wassen, M. J., Verkroost, A. W. M., & De Ruiter, P. C. 2003. Species richness–productivity patterns differ between N‐, P‐, and K‐limited wetlands. Ecology, 84(8), 2191-2199.
    Owen, D. F., & Wiegert, R. G. 1976. Do consumers maximize plant fitness?. Oikos, 488-492.
    Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., ... & Ciais, P. 2011. A large and persistent carbon sink in the world’s forests. Science, 1201609.
    Pielke, R. A., Avissar, R., Raupach, M., Dolman, A. J., Zeng, X., & Denning, A. S. 1998. Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biology, 4(5), 461-475.
    Pike, L. H. 1978. The importance of epiphytic lichens in mineral cycling. Bryologist, 247-257.
    Proulx, M., & Mazumder, A. 1998. Reversal of grazing impact on plant species richness in nutrient‐poor vs. nutrient‐rich ecosystems. Ecology, 79(8), 2581-2592.
    Pypker, T. G., Unsworth, M. H., & Bond, B. J. 2006. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canadian Journal of Forest Research, 36(4), 819-832.
    Revkin, A. C. 1988. Endless summer: living with the greenhouse effect. Discover, 1988, 50-61..
    Richards, P. W. 1952. The tropical rain forest; an ecological study. The University Press; Cambridge.
    Royer, J. F., & Mahouf, J. F. 1992. Consequences of an increase in the greenhouse effect'. The Courier, 133, 18-21.
    Sano, T., Hirano, T., Liang, N., Hirata, R., & Fujinuma, Y. 2010. Carbon dioxide exchange of a larch forest after a typhoon disturbance. Forest Ecology and Management, 260(12), 2214-2223.
    Schmidt, G., & Zotz, G. 2001. Ecophysiological consequences of differences in plant size: in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. Plant, Cell & Environment, 24(1), 101-111.
    Schwartz, M. D., & Karl, T. R. 1990. Spring phenology: Nature's experiment to detect the effect of “green-up” on surface maximum temperatures. Monthly Weather Review, 118(4), 883-890.
    Seely, B., Welham, C., & Scoullar, K. 2015. Application of a hybrid forest growth model to evaluate climate change impacts on productivity, nutrient cycling and mortality in a montane forest ecosystem. PloS One, 10(8), e0135034.
    Shiyomi, M., Okada, M., Takahashi, S., & Tang, Y. 1998. Spatial pattern changes in aboveground plant biomass in a grazing pasture. Ecological research, 13(3), 313-322.
    Shukla, J., Nobre, C., & Sellers, P. 1990. Amazon deforestation and climate change. Science, 247(4948), 1322-1325.
    Stuntz, S., Ziegler, C., Simon, U., & Zotz, G. 2002. Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. Journal of Tropical Ecology, 18(2), 161-176.
    Sousa, W. P. 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 15(1), 353-391.
    Taddese, G., Saleem, M. M., Abyie, A., & Wagnew, A. 2002. Impact of grazing on plant species richness, plant biomass, plant attribute, and soil physical and hydrological properties of vertisol in East African highlands. Environmental Management, 29(2), 279-289.
    Tanner, E. V. J., Kapos, V., & Franco, W. 1992. Nitorgen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology, 73(1), 78-86.
    Tanner, E. V. J., Kapos, V., Freskos, S., Healey, J. R., & Theobald, A. M. 1990. Nitrogen and phosphorus fertilization of Jamaican montane forest trees. Journal of Tropical Ecology, 6(2), 231-238.
    Tanner, E. V. J., Vitousek, P. A., & Cuevas, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79(1), 10-22..
    Vitousek, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65(1), 285-298.
    Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., ... & Tilman, D. G. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737-750.
    Vitousek, P. M., & Howarth, R. W. 1991. Nitrogen limitation on land and in the sea: how can it occur?. Biogeochemistry, 13(2), 87-115.
    Vitousek, P. M., & Matson, P. A. 1984. Mechanisms of nitrogen retention in forest ecosystems: a field experiment. Science, 225(4657), 51-52.
    Vitousek, P. M., & Sanford Jr, R. L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17(1), 137-167.
    Vitousek, P. M., Turner, D. R., & Kitayama, K. 1995. Foliar nutrients during long‐term soil development in Hawaiian montane rain forest. Ecology, 76(3), 712-720.
    Vitousek, P. M., Walker, L. R., Whiteaker, L. D., & Matson, P. A. 1993. Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry, 23(3), 197-215.
    Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20(1), 5-15.
    Walker, T. W., & Syers, J. K. 1976. The fate of phosphorus during pedogenesis. Geoderma, 15(1), 1-19.
    Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V., Sayer, E. J., ... & Garcia, M. N. 2011. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92(8), 1616-1625.
    Wu, C. C., Tsui, C. C., Hseih, C. F., Asio, V. B., & Chen, Z. S. 2007. Mineral nutrient status of tree species in relation to environmental factors in the subtropical rain forest of Taiwan. Forest Ecology and Management, 239(1-3), 81-91.
    Xu, X., Hirata, E., Enoki, T., & Tokashiki, Y. 2004. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecology, 173(2), 161-170.
    Young, J. L. M., Kanashiro, S., Jocys, T., & Tavares, A. R. 2018. Silver vase bromeliad: Plant growth and mineral nutrition under macronutrients omission. Scientia Horticulturae, 234, 318-322..
    Zhang, Q., & Zak, J. C. 1995. Effects of gap size on litter decomposition and microbial activity in a subtropical forest. Ecology, 76(7), 2196-2204.
    Zimmerman, J. K., Everham III, E. M., Waide, R. B., Lodge, D. J., Taylor, C. M., & Brokaw, N. V. 1994. Responses of tree species to hurricane winds in subtropical wet forest in Puerto Rico: implications for tropical tree life histories. Journal of Ecology, 911-922.
    Zotz, G. 1997. Photosynthetic capacity increases with plant size. Botanica Acta, 110(4), 306-308.
    Zotz, G., & Asshoff, R. 2010. Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen. Plant Biology, 12(1), 108-113.
    Zotz, G., & Hietz, P. 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany, 52(364), 2067-2078.
    Zotz, G., Hietz, P., & Schmidt, G. 2001. Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes. Journal of Experimental Botany, 52(363), 2051-2056.
    Zotz, G., & Thomas, V. 1999. How much water is in the tank? Model calculations for two epiphytic bromeliads. Annals of Botany, 83(2), 183-192.
    Zotz, G., & Winkler, U. 2013. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia, 171(3), 733-741.
    Zotz, G., & Ziegler, H. 1999. Size-related differences in carbon isotope discrimination in the epiphytic orchid, Dimerandra emarginata. Naturwissenschaften, 86(1), 39-40.

    下載圖示
    QR CODE