簡易檢索 / 詳目顯示

研究生: 江彥震
Chiang, Yen-Chen
論文名稱: 智慧手錶關鍵領域之發展趨勢—以專利分析法探討
Development Trend of Key Fields in Smart Watch -- Use Patent Analysis
指導教授: 蘇友珊
Su, You-Shan
戴建耘
Dai, Chien-Yun
口試委員: 蘇友珊
Su, You-Shan
戴建耘
Dai, Chien-Yun
耿筠
Ken, Yun
口試日期: 2024/05/15
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 112
中文關鍵詞: 智慧手錶專利分析技術生命週期有機發光二極體微發光二極體
英文關鍵詞: Smart Watch, Patent Analysis, Technology Life Cycle, OLED, Micro LED
研究方法: 次級資料分析專利計量分析
DOI URL: http://doi.org/10.6345/NTNU202401193
論文種類: 學術論文
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以專利分析作為主軸,並以過往文獻作為基準,以此設定出與智慧手錶相關之五大領域,分別為螢幕顯示方面的有機發光二極體 (OLED) 、微發光二極體 (Micro LED) ,以及電池、MEMS感測器和低功耗藍芽 (BLE) ,以此作為基準,並以歷年專利數量、國家別、公司別、國際專利分類號 (IPC) 以及技術生命週期作為分析指標,透過經濟部智慧財產局 (Taiwan Intellectual Property Office, TIPO) 中的全球專利檢索系統蒐集相關數據,並將數據按照所設立之分析指標進行分析,以此預測智慧手錶相關技術之未來趨勢及發展方向。
    各領域結合分析指標後得出本研究之研究結果,於歷年專利數量中可以發現,螢幕顯示技術方面,自2021年開始發展重心逐漸從OLED轉往Micro LED,其餘領域成長速度在近幾年雖有趨緩的趨勢,但仍持續發展中。於國家別以及公司別分析中,得出目前引領智慧手錶關鍵領域發展的主要國家為韓國、美國、中國以及日本四個國家,其中中國佔有智慧手錶整體領域中最多的專利,韓國則是在螢幕顯示方面有著絕對的統治力。公司別分析方面,表現最為突出的是三星 (Samsung) ,在各領域中皆取得優異的成績。國際專利分類號分析中則可看出各領域發展的重點方向。最後的技術生命週期分析中,研究結果顯示目前智慧手錶整體領域、OLED、Micro LED三個領域目前處於技術成熟期中期,電池及BLE這兩個領域處於技術成熟期初期,而MEMS感測器這項領域則已進入技術成熟期後期。

    This study use patent analysis as the main research method and sets five major fields related to smartwatches based on past literature. The five fields are OLED and Micro LED, that related to field of screen display. Battery, MEMS sensor and BLE are the three remaining fields. These fields serve as the basis. Historical patent quantity, country distribution, company distribution, International Patent Classification (IPC) , and technology life cycle are analyzed as indicators. Relevant data is collected through the Global Patent Search System of the Taiwan Intellectual Property Office (TIPO) , and the data is analyzed according to the established indicators to predict the future trends and development directions of smartwatch-related technologies.
    The results of this study are obtained from the analysis indicators in various fields. It can be found from the number of patents over the years that in terms of screen display technology, the development focus has gradually shifted from OLED to Micro LED since 2021. The growth rate of other fields has slowed down in recent years, but it is still developing. In the analysis of countries and companies, it is concluded that the main countries leading the development of key fields in smart watch are South Korea, the United States, China and Japan, among which China has the most patents in the overall field of smart watches, and South Korea has absolute dominance in screen display. In terms of company analysis, the most outstanding performer is Samsung, which has achieved excellent results in all fields. The key directions of development in various fields can be founded in IPC analysis. In the technology life cycle analysis, the research results show that the overall field of smart watches, OLED, and Micro LED is currently in the middle of the technology maturity period. The two fields of battery and BLE are in the early stage of the technology maturity period. The field of MEMS sensors has entered the late stage of technology maturity.

    謝 誌 i 摘 要 ii Abstract iii 目 次 iv 表 次 vi 圖 次 viii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 5 第二章 文獻回顧 7 第一節 智慧手錶產業之發展 7 第二節 智慧手錶產業關鍵產業領域 13 第三節 專利分析 23 第四節 技術生命週期 24 第三章 研究方法 27 第一節 研究架構 27 第二節 專利計量分析法 (Patent Bibliometrics) 28 第三節 操作型定義 29 第四節 專利檢索 30 第四章 研究結果 41 第一節 歷年件數分析 42 第二節 國家別分析 56 第三節 公司別分析 63 第四節 國際專利號分類分析 71 第五節 技術生命週期 84 第五章 研究討論 93 第一節 研究發現 93 第二節 研究貢獻 99 第三節、研究限制 100 第四節、未來研究方向 101 第五節、結論與建議 101 參考文獻 105

    中國國家知識產權局(2023)。關鍵數字技術專利分類體系(2023)。取自https://www.cnipa.gov.cn/module/download/downfile.jsp?classid=0&showname=%E5%85%B3%E9%94%AE%E6%95%B0%E5%AD%97%E6%8A%80%E6%9C%AF%E4%B8%93%E5%88%A9%E5%88%86%E7%B1%BB%E4%BD%93%E7%B3%BB%EF%BC%882023%EF%BC%89.pdf&filename=d32119ae1faa4fbf9e308824862f87dd.pdf
    呂珮如(2019)。全球智慧穿戴裝置市場分析。工研院產科所。取自http://www.twcloud.org.tw/files/file_pool/1/0j211517917521474259/2019.07-%E9%9B%B2%E5%8D%94%E6%A1%88%E4%BE%8B%E5%88%86%E6%9E%90-%E5%85%A8%E7%90%83%E6%99%BA%E6%85%A7%E7%A9%BF%E6%88%B4%E8%A3%9D%E7%BD%AE%E5%B8%82%E5%A0%B4%E5%88%86%E6%9E%90.pdf
    林薏茹(2016)。Micro LED——即將顛覆產業的新一代顯示技術。科技新報TechNews。取自 https://technews.tw/2016/09/22/micro-led-ledinside-forum-2016/
    邱宇彬(2023)。受惠於日系錶廠與歐美車廠導入,預估2027年Micro LED晶片產值近6億美元。TrendForce。取自https://www.trendforce.com.tw/presscenter/news/20230810-11786.html
    財團法人資訊工業策進會(2016)。智慧穿戴 創新生活 解析智慧穿戴式裝置市場趨勢與創新產品應用。取自https://www.iii.org.tw/Focus/FocusDtl.aspx?f_type=2&f_sqno=Zdw7bw%2B50oGAn2GA6qArNg__&fm_sqno=13
    財團法人專利檢索中心(2016)。鋰離子電池技術之專利分析。取自https://www.psc.org.tw/upload/17/2018013015292343999.pdf
    馬梅彦(2018)。1997-2017 年全球MEMS傳感器專利分析。科技和產業,18(2),123-126。
    陳玉華(2007)。專利分析與應用管理---台灣OLED面板產業。私立逢甲大學經營管理碩士在職專班學位論文。
    經濟部智慧財產局(2019)。Micro LED 顯示器關鍵技術――巨量轉移技術之專利趨勢分析。智慧財產權月刊,242,96-127。
    經濟部智慧財產局(2023)。歷年專利審查基準彙編,專利要件。取自https://topic.tipo.gov.tw/patents-tw/cp-687-870144-d6c81-101.html
    Eduardo Montanez (2021)。塑造穿戴式裝置產業的四大趨勢。電子工程專輯(EE Times)。取自 https://www.eettaiwan.com/20210914nt31-four-trends-shaping-the-wearables-industry/
    Texas Instruments (2021)。無線連結技術選擇指南(Rev.B)。TECHNICAL DOCUMENT - MARKETING SELECTION GUIDE。取自https://www.ti.com/lit/sg/nest002b/nest002b.pdf?ts=1696037615056
    Abbas, A., Zhang, L., Khan, & S. U. (2014). A literature review on the state-of-the-art in patent analysis.Science Direct, World Patent Information, 37, 3-13.
    Achilladelis, B. (1993). The dynamics of technological innovation: The sector of antibacterial medicines. Research Policy, 22(4), 279-308.
    Achilladelis, B., Schwarzkopf, A., & Cines, M. (1990). The dynamics of technological innovation: the case of the chemical industry. Research Policy, 19(1), 1-34.
    Alex, C (2023). Smart Watch PCB: The Complete FAQ Guide-2. Linked in. Retrieved from https://www.linkedin.com/pulse/smart-watch-pcb-complete-faq-guide-2-alex-cheng
    Anye, V. C., Ngasoh, O. F., Stanislas, T. T., Akudago, A. F., Fru, J. N., & Adeniji, S. A. (2023). Mechanical Properties of Organic Light Emitting Diodes. Comprehensive Structural Integrity (Second Edition), 10, 240-261. Science Direct.
    Balli, S., Sağbaş, E, A., & Peker, M. (2018). Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm. Sage Journals, Measurement and Control, 52(1-2).
    Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data, In Proceedings of the Second International Conference on Pervasive Computing, 1–17.
    Behzadi, A., Shamloo, A. S., Mouratis, K., Hindricks, G., Arya, A., & Bollmann, A. (2020). Feasibility and Reliability of SmartWatch to Obtain 3-Lead Electrocardiogram Recordings.PubMed Central, Sensors (Basel), 20(18), 5074.
    Bengisu, M., & Nekhili, R. (2006). Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change, 73(7), 835-844.
    Chaleshtori, Z. N., Zvanovec, S., Ghassemlooy, Z., Haddad, O., & Khalighi, M. A. (2021). Impact of receiver orientation on oled-based visible-light D2D communications. In 2021 17th International Symposium on Wireless Communication Systems (ISWCS), 1-6. IEEE.
    Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World patent information, 5(3), 137-143.
    Counterpoint Research (2023). Global Smartwatch Shipments Market Share Q2 2023. Retrieved from https://www.counterpointresearch.com/insights/global-smartwatch-shipments-market-share/
    Dehghani, M., & Dangelico, R. M. (2017). Smart wearable technologies: Current status and market orientation through a patent analysis. In 2017 IEEE International Conference on Industrial Technology (ICIT), 1570-1575.
    Dehghani, M., Kim, K, J., & Dangelico, R, M. (2018). Will smartwatches last? factors contributing to intention to keep using smart wearable technology Science Direct, Telematics and Informatics, 35(2), 480-490.
    Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Bus Econ, 9, 361-381.
    Fang, M., & Huy, D. T. N. (2023). Building a cross-border e-commerce talent training platform based on logistic regression model. The Journal of High Technology Management Research, 34(2), 100473.
    Gao, W., Emaminejad, S., Nyein, H. Y., Challa, S., Chen, K., & Peck, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–514.
    Homayounfar, M., Malekijoo, A., Visuri, A., Dobbins, C., Peltonen, E., Pinsky, E., Teymourian, K., & Rawassizadeh, R. (2020). Understanding Smartwatch Battery Utilization in the Wild. MDPI, Sensors 2020, 20(13), 3784.
    Hu, X., Luo, H., Guo, M., & Wang, J. (2022). Ecological technology evaluation model and its application based on Logistic Regression. Ecological Indicators, 136, 108641.
    Huang, Y., Li, R., Zou, F., Jiang, L., Porterf, A. L., & Zhang, L. (2022). Technology life cycle analysis: From the dynamic perspective of patent citation networks. Technological Forecasting & Social Change, 181, 6.
    IDC (2022). In The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 2184-2187.
    Jee, S, J., & Sohn, S, Y. (2015). Patent network based conjoint analysis for wearable device. ScienceDirect, Technological Forecasting and Social Change, 101, 338-346.
    Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications.
    Lammel, G. (2015). The future of MEMS sensors in our connected world. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 61-64. IEEE.
    Lee, U., Jeong, H., Kim, H., Kim, R., & Jeong, Y. (2017). Smartwatch Wearing Behavior Analysis: A Longitudinal Study. In ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubicomp); ACM SIGCHI AND SIGMOBILE.
    Li, Z., Wei, Z., Huang, L., Zhang, S., & Nie, J. (2016). Hierarchical activity recognition using smart watches and RGB-depth cameras. Sensors, 16(10), 1713.
    Li, L. (2023). Apple dives into display-making to cut reliance on Samsung. NIKKIE Asia. Retrieved from https://asia.nikkei.com/Spotlight/Supply-Chain/Apple-dives-into-display-making-to-cut-reliance-on-Samsung
    Liu, S. J., & Shyu, J. (1997). Strategic planning for technology development with patent analysis. International journal of technology management, 13(5-6), 661-680.
    Liu, X., Chen, T., Qian, F., Guo, Z., Lin, F.X., Wang, X., & Chen, K. (2017). Characterizing smartwatch usage in the wild. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, 385–398.
    Manu, S. L., & Shikaa, S. (2023). Mathematical modeling of Taraba State population growth using exponential and logistic models. Results in Control and Optimization, 12, 100265.
    Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological forecasting and social change, 70(8), 719-733.
    Merino, D. N. (1990). Development of a technological S-curve for tire cord textiles. Technological Forecasting and Social Change, 37(3), 275-291.
    Meyer, P. S., Yung, J. W., & Ausubel, J. H. (1999). A primer on logistic growth and substitution: the mathematics of the Loglet Lab software. Technological forecasting and social change, 61(3), 247-271.
    Micro LED Industry Association. (2023). Micro LED yields – and strategies to overcome.
    Micro LED Industry Association. (2023). Micro LED smartwatch displays in 2023, LED cost analysis.
    Min, C., Kang, S., Yoo, C., Cha, J., Choi, S., Oh, Y., & Song, J. (2015). Exploring current practices for battery use and management of smartwatches. In Proceedings of the 2015 ACM International Symposium on Wearable Computers, Osaka, Japan, 11–18.
    Muhlsteff, J., Such, O., Schmidt, R., Perkuhn, M., Reiter. H., Lauter, J., & Harris, M. (2004). Wearable approach for continuous ECG-and activity patient-monitoring. In The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1, 2184-2187.
    Narin, F. (1994). Patent bibliometrics. Scientometrics, 30(1), 147-155.
    Narin, F., Noma, E., & Perry, R. (1987). Patents as indicators of corporate technological strength. Research policy, 16(2-4), 143-155.
    Penrose, E. T. (1951). The economics of the international patent system (No Title).
    Poyraz, E., & Memik, G. (2016). Analyzing power consumption and characterizing user activities on smartwatches: Summary. In Proceedings of the 2016 IEEE International Symposium on Workload Characterization (IISWC), 1–2.
    Qi, E. (2021). BoM Analysis: Apple Watch Series 6 Costs $136 to Produce. CounterPoint Research. Retrieved from https://www.counterpointresearch.com/insights/bom-analysis-apple-watch-series-6/
    Rawassizadeh, R., Price, B. A., & Petre, M. (2014). Wearables: Has the Age of Smartwatches Finally Arrived? Communications of the ACM, 58(1), 45-47.
    Shoaib, M., Incel, O. D., Scolten, H., & Havinga, P. (2017). Resource consumption analysis of online activity recognition on mobile phones and smartwatches. In Proceedings of the 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), 1–6.
    Soete, L. G., & Wyatt, S. M. (1983). The use of foreign patenting as an internationally comparable science and technology output indicator. Scientometrics, 5, 31-54.
    Taylor, C. T., & Silberston, A. (1973). The economic impact of the patent system: a study of the British experience, 23, CUP Archive.
    Tehrani, K., & Michael, A. (2014). Wearable technology and wearable devices: Everything you need to know. Wearable Devices Magazine, 26.
    Tosi, J., Taffoni, F., Santacatterina, M., Sannino, R., & Formica, D. (2017). Performance Evaluation of Bluetooth Low Energy: A Systematic Review.MDPI, Sensors , 17(12), 2898.
    Tsoularis, A., & Wallace, J. (2002). Analysis of logistic growth models. Mathematical biosciences, 179(1), 21-55.
    Virey, E. H. (2023). Can Micro LEDs Help Displays Better Sense the World?. Information Display, Merging Sensing and Displays, 39(4), 6-12.
    Visuri, A., Sarsenbayeva, Z., Van Berkel, N., Goncalves, J., Rawassizadeh, R., Kostakos, V., & Ferreira, D. (2017). Quantifying sources and types of smartwatch usage sessions. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 3569–3581.
    WIPO (2023). Frequently Asked Questions: Patents. Retrieved fromhttps://www.wipo.int/patents/zh/faq_patents.html
    WIPO (2023). International Patent Classification (IPC). Retrieved fromhttps://www.wipo.int/classifications/ipc/en/
    Yang, J., Poellabauer, C., Mitra, P., & Neubecker, C. (2020). Beyond beaconing: Emerging applications and challenges of BLE. Science Direct, Ad Hoc Networks, 97.
    Yao, Y., Liu, X., & Qian, F. (2019). Understanding the Predictability of Smartwatch Usage. In Proceedings of the 5th ACM Workshop on Wearable Systems and Applications, 11–16.

    無法下載圖示 本全文未授權公開
    QR CODE