簡易檢索 / 詳目顯示

研究生: 簡宗信
Chien, Tsung-Hsin
論文名稱: 利用可攜式腦波儀觀察不同難度下的認知負荷
Monitoring cognitive load utilize portable EEG during mental arithmetic task
指導教授: 葉庭光
Yeh, Ting-Kuang
學位類別: 碩士
Master
系所名稱: 海洋環境科技研究所
Graduate Institute of Marine Environmental Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 59
中文關鍵詞: 認知負荷可攜式腦波儀數學乘法心算難度額葉區θ波
DOI URL: https://doi.org/10.6345/NTNU202203464
論文種類: 學術論文
相關次數: 點閱:149下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在學習的歷程中,學習者在對所感知的資訊及內容進行思考或整合時,皆須透過「工作記憶區」來處理,但是,工作記憶有容量的限制,因此,如果教材內容或學習步驟等超過學習者的工作記憶容量,便容易造成工作記憶負荷增加,有損了學習者的理解及學習的能力,影響他們順利解決問題,Sweller 將這種加諸在學習者認知系統上的負荷稱之為「認知負荷」。
    在課堂中若教師能隨時了解學生認知負荷的狀況,注意學生是否處於極高的認知負荷,或已經認知超載,便能「立即」調整教學內容與速度,協助學生學習。為了注重「即時性」及價格、方便性等,「可攜式腦波儀」最具有硬體上的優勢。
    由於「可攜式腦波儀」主要硬體部件已設計完成,發展相應的「演算法」來有效地預測「難度」為現階段的重要目標。本研究以20位大學學生為研究對象,並利用四個難度的數學乘法心算作為試題來進行測驗。為了考量可攜式腦波儀電極貼片的限制,黏貼位置選擇以前額葉及前額葉的左、右側共三點來觀察。另外,參考過去文獻指出額葉區的θ波與工作記憶的關係,因此,為評估受試者感受到的認知負荷,本研究初步以「θ腦波」為演算基礎來分析其與試題難度間的相關性。
    研究結果如下:貼在前額葉及前額葉左、右側的數據皆呈高度相關,表示整體的預測力很高,尤其是前額葉右側的位置,相關性最高,預測力約達67%,表示某種程度上我們可以利用額葉區的θ波來預測學習者在學習歷程中感受到的負荷。

    目錄 第一章 緒論  1 第一節 研究背景與動機  1 第二節 研究目的  3 第三節 研究範圍  4 第四節 名詞介紹-腦部結構與腦波  4 第二章 文獻探討   7 第一節 工作記憶  7 第二節 認知負荷理論 8 第三節 認知負荷的意義 9 第四節 認知負荷的來源與類型     10 第五節 認知負荷對學習的影響     12 第六節 認知負荷的測量        14 第七節 腦部神經影像測量法      18 第八節 利用腦部神經影像進行與工作記憶相關研究  20 第三章 研究方法           25 第一節 研究流程           25 第二節 研究對象與研究工具      27 第三節 分析方法           29 第四節 資料處理           35 第四章 研究結果           36 第五章 結果討論與研究限制      41 第一節 研究結果討論         41 討論一                41 討論二                44 討論三                46 討論四                49 討論五                50 第二節 研究限制           51 參考文獻               52 附錄                 59

    Adrian, E. D., & Matthews, B. H. (1934). The interpretation of potential waves in the cortex. The Journal of Physiology, 81(4), 440-471.
    Aggleton, J., Shaw, C., & Gaffan, E. (1992). The performance of postencephalitic amnesic subjects on two behavioural tests of memory: concurrent discrimination learning and delayed matching-to-sample. Cortex, 28(3), 359-372.
    Antonenko, P., Paas, F., Grabner, R., & Van Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational psychology review, 22(4), 425-438.
    Ayres, P. (2006). Impact of reducing intrinsic cognitive load on learning in a mathematical domain. Applied cognitive psychology, 20(3), 287-298.
    Ayres, P., & Sweller, J. (1990). Locus of difficulty in multistage mathematics problems. The American Journal of Psychology, 167-193.
    Ayres, P. L. (2001). Systematic mathematical errors and cognitive load. Contemporary Educational Psychology, 26(2), 227-248.
    Baddeley, A. (1992). WORKING MEMORY. Science, 255(5044), 556-559. doi:10.1126/science.1736359
    Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. doi:10.1016/s1364-6613(00)01538-2
    Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of learning and motivation, 8, 47-89.
    Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195-1205.
    Brouwer, A.-M., Hogervorst, M. A., Van Erp, J. B., Heffelaar, T., Zimmerman, P. H., & Oostenveld, R. (2012). Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of neural engineering, 9(4), 045008.
    Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational psychologist, 38(1), 53-61.
    Callicott, J. H., Ramsey, N. F., Tallent, K., Bertolino, A., Knable, M. B., Coppola, R., . . . Frank, J. A. (1998). Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology, 18(3), 186-196.
    Cave, C. B., & Squire, L. R. (1992). Intact verbal and nonverbal short‐term memory following damage to the human hippocampus. Hippocampus, 2(2), 151-163.
    Chandler, P., & Sweller, J. (1991). COGNITIVE LOAD THEORY AND THE FORMAT OF INSTRUCTION. Cognition and Instruction, 8(4), 293-332. doi:10.1207/s1532690xci0804_2
    Cohen, N., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampus: Cambridge, MA: MIT Press.
    Cooper, N. R., Croft, R. J., Dominey, S. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International journal of psychophysiology, 47(1), 65-74.
    D'Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain and cognition, 41(1), 66-86.
    Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience & Biobehavioral Reviews, 28(7), 771-784.
    Daneman, M., & Carpenter, P. A. (1980). INDIVIDUAL-DIFFERENCES IN WORKING MEMORY AND READING. Journal of Verbal Learning and Verbal Behavior, 19(4), 450-466. doi:10.1016/s0022-5371(80)90312-6
    Das, J. P., Naglieri, J. A., & Kirby, J. R. (1994). Assessment of cognitive processes: The PASS theory of intelligence: Allyn & Bacon.
    Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506.
    Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109-120.
    Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron, 23(2), 209-226.
    Fingelkurts, A., Fingelkurts, A., Krause, C., Kaplan, A., Borisov, S., & Sams, M. (2003). Structural (operational) synchrony of EEG alpha activity during an auditory memory task. Neuroimage, 20(1), 529-542.
    Frisk, V., & Milner, B. (1990). The relationship of working memory to the immediate recall of stories following unilateral temporal or frontal lobectomy. Neuropsychologia, 28(2), 121-135.
    Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331-349.
    Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral cortex, 7(4), 374-385.
    Glass, A., & Holyoak, K. (1986). Cognition. NY: Random House.
    Gopher, D., & Braune, R. (1984). On the psychophysics of workload: Why bother with subjective measures? Human Factors, 26(5), 519-532.
    Hendy, K. C., Hamilton, K. M., & Landry, L. N. (1993). Measuring subjective workload: when is one scale better than many? Human Factors, 35(4), 579-601.
    Henke, K., Weber, B., Kneifel, S., Wieser, H. G., & Buck, A. (1999). Human hippocampus associates information in memory. Proceedings of the National Academy of Sciences, 96(10), 5884-5889.
    Jansma, J. M., Ramsey, N. F., Coppola, R., & Kahn, R. S. (2000). Specific versus nonspecific brain activity in a parametric N-back task. Neuroimage, 12(6), 688-697.
    Jansma, J. M., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic processing. Journal of Cognitive Neuroscience, 13(6), 730-743.
    Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral cortex, 12(8), 877-882.
    Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in neurosciences, 28(2), 67-72.
    Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8), 1395-1399.
    Jex, H. R. (1988). Measuring mental workload: Problems, progress, and promises. Advances in Psychology, 52, 5-39.
    Just, M. A., & Carpenter, P. A. (1992). A CAPACITY THEORY OF COMPREHENSION - INDIVIDUAL-DIFFERENCES IN WORKING MEMORY. Psychological Review, 99(1), 122-149. doi:10.1037/0033-295x.99.1.122
    Klimesch, W., Doppelmayr, M., Pachinger, T., & Ripper, B. (1997). Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neuroscience letters, 238(1), 9-12.
    Klimesch, W., Doppelmayr, M., Roehm, D., Pöllhuber, D., & Stadler, W. (2000). Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? Neuroscience letters, 284(1), 97-100.
    Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). Paradoxical'alpha synchronization in a memory task. Cognitive Brain Research, 7(4), 493-501.
    Klimesch, W., Doppelmayr, M., Stadler, W., Pöllhuber, D., Sauseng, P., & Roehm, D. (2001). Episodic retrieval is reflected by a process specific increase in human electroencephalographic theta activity. Neuroscience letters, 302(1), 49-52.
    Krause, C. M., Lang, A. H., Laine, M., Kuusisto, M., & Pörn, B. (1996). Event-related. EEG desynchronization and synchronization during an auditory memory task. Electroencephalography and clinical neurophysiology, 98(4), 319-326.
    Kumaran, D., & Maguire, E. A. (2006). The dynamics of hippocampal activation during encoding of overlapping sequences. Neuron, 49(4), 617-629.
    Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of neurology, 48(4), 657-661.
    Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of educational psychology, 88(1), 49.
    Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52. doi:10.1207/s15326985ep3801_6
    McEvoy, L., Smith, M., & Gevins, A. (2000). Test–retest reliability of cognitive EEG. Clinical Neurophysiology, 111(3), 457-463.
    Miller, G. (1956). Human memory and the storage of information. IRE Transactions on Information Theory, 2(3), 129-137.
    Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control: Cambridge University Press.
    Mizuhara, H., Wang, L.-Q., Kobayashi, K., & Yamaguchi, Y. (2005). Long-range EEG phase synchronization during an arithmetic task indexes a coherent cortical network simultaneously measured by fMRI. Neuroimage, 27(3), 553-563.
    Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of educational psychology, 87(2), 319.
    Nichols, E. A., Kao, Y.-C., Verfaellie, M., & Gabrieli, J. D. (2006). Working memory and long-term memory for faces: Evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus, 16(7), 604.
    O'Donnell, R. D., & Eggemeier, F. T. (1986). Workload assessment methodology.
    Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature neuroscience, 7(1), 75-79.
    Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. Neuroimage, 27(2), 341-356.
    Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. European journal of Neuroscience, 9(7), 1329-1339.
    Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies. Human brain mapping, 25(1), 46-59.
    Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4. doi:10.1207/s15326985ep3801_1
    Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational psychologist, 38(1), 63-71.
    Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of educational psychology, 84(4), 429.
    Paas, F. G., Van Merriënboer, J. J., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and motor skills, 79(1), 419-430.
    Penfield, W., & Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Archives of Neurology & Psychiatry, 79(5), 475-497.
    Pfurtscheller, G., Stancak, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. International journal of psychophysiology, 24(1), 39-46.
    Ranganath, C., & D'Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31(5), 865-873.
    Roland, P., & Friberg, L. (1985). Localization of cortical areas activated by thinking. Journal of Neurophysiology, 53(5), 1219-1243.
    Rubio, S., Díaz, E., Martín, J., & Puente, J. M. (2004). Evaluation of subjective mental workload: A comparison of SWAT, NASA‐TLX, and workload profile methods. Applied Psychology, 53(1), 61-86.
    Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G., & Von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences, 95(12), 7092-7096.
    Sauseng, P., Klimesch, W., Gruber, W., Doppelmayr, M., Stadler, W., & Schabus, M. (2002). The interplay between theta and alpha oscillations in the human electroencephalogram reflects the transfer of information between memory systems. Neuroscience letters, 324(2), 121-124.
    Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025.
    Schoenfeld, A. H. (1985). Metacognitive and epistemological issues in mathematical understanding. Teaching and learning mathematical problem solving: Multiple research perspectives, 361-380.
    Schon, K., Hasselmo, M. E., LoPresti, M. L., Tricarico, M. D., & Stern, C. E. (2004). Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. Journal of Neuroscience, 24(49), 11088-11097.
    Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20(1), 11-21.
    Simon, H. A. (1975). The functional equivalence of problem solving skills. Cognitive Psychology, 7(2), 268-288.
    Skuballa, I. T., Fortunski, C., & Renkl, A. (2015). An eye movement pre-training fosters the comprehension of processes and functions in technical systems. Frontiers in psychology, 6.
    Sweller, J. (1988). COGNITIVE LOAD DURING PROBLEM-SOLVING - EFFECTS ON LEARNING. Cognitive Science, 12(2), 257-285. doi:10.1207/s15516709cog1202_4
    Sweller, J. (2008). Human cognitive architecture. Handbook of research on educational communications and technology, 369-381.
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
    Tuladhar, A. M., Huurne, N. t., Schoffelen, J. M., Maris, E., Oostenveld, R., & Jensen, O. (2007). Parieto‐occipital sources account for the increase in alpha activity with working memory load. Human brain mapping, 28(8), 785-792.
    van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147-177. doi:10.1007/s10648-005-3951-0
    Vanni, S., Revonsuo, A., & Hari, R. (1997). Modulation of the parieto-occipital alpha rhythm during object detection. Journal of Neuroscience, 17(18), 7141-7147.
    Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a test and evaluation environment. Human Factors, 35(2), 263-281.
    Winterer, G., Coppola, R., Goldberg, T. E., Egan, M. F., Jones, D. W., Sanchez, C. E., & Weinberger, D. R. (2004). Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. American Journal of Psychiatry, 161(3), 490-500.
    Xie, B., & Salvendy, G. (2000). Review and reappraisal of modelling and predicting mental workload in single-and multi-task environments. Work & stress, 14(1), 74-99.
    Yeh, T. K., Tseng, K. Y., Cho, C. W., Barufaldi, J. P., Lin, M. S., & Chang, C. Y. (2012). Exploring the Impact of Prior Knowledge and Appropriate Feedback on Students' Perceived Cognitive Load and Learning Outcomes: Animation-based earthquakes instruction. International Journal of Science Education, 34(10), 1555-1570. doi:10.1080/09500693.2011.579640
    宋曜廷. (2000). 先前知識, 文章結構與多媒體呈現對文章學習的影響 (未出版博士論文). 國立臺灣師範大學, 臺北市.
    李晓东, 聂尤彦, 庞爱莲, & 林崇德. (2003). 工作记忆对小学三年级学生解决比较问题的影响. 心理发展与教育, 3, 41-45.
    曹寶龍, 劉慧娟, & 林崇德. (2005). 認知負荷對小學生工作記憶資源分配策略的影響: 心理發展與教育.
    郭秀緞. (2005). 以認知負荷的觀點探討數學問題設計的適切性. 教育研究, 13, 169-182.
    陳密桃, & 陳埩淑. (2003). 多元智能理論在幼兒品格教育教學上的探討.
    黃克文. (1996). 認知負荷與個人特質及學習成就之關聯. 國立臺北教育大學國民教育研究所學位論文, 1-153.
    黃柏勳. (2003). 認知上的瓶頸─ 認知負荷理論. 教育研究, 55, 71-78.
    廖宇璁. (2009). 想像幾何旋轉動作與數學心算之腦電波分析. 臺灣師範大學機電科技研究所學位論文, 1-96.
    顏世杰. (2008). 記憶, 概念與心算複雜度在腦波 (EEG) 所呈現的反應與評估.

    下載圖示
    QR CODE