研究生: |
簡宗信 Chien, Tsung-Hsin |
---|---|
論文名稱: |
利用可攜式腦波儀觀察不同難度下的認知負荷 Monitoring cognitive load utilize portable EEG during mental arithmetic task |
指導教授: |
葉庭光
Yeh, Ting-Kuang |
學位類別: |
碩士 Master |
系所名稱: |
海洋環境科技研究所 Graduate Institute of Marine Environmental Science and Technology |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 認知負荷 、可攜式腦波儀 、數學乘法心算 、難度 、額葉區 、θ波 |
DOI URL: | https://doi.org/10.6345/NTNU202203464 |
論文種類: | 學術論文 |
相關次數: | 點閱:186 下載:28 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在學習的歷程中,學習者在對所感知的資訊及內容進行思考或整合時,皆須透過「工作記憶區」來處理,但是,工作記憶有容量的限制,因此,如果教材內容或學習步驟等超過學習者的工作記憶容量,便容易造成工作記憶負荷增加,有損了學習者的理解及學習的能力,影響他們順利解決問題,Sweller 將這種加諸在學習者認知系統上的負荷稱之為「認知負荷」。
在課堂中若教師能隨時了解學生認知負荷的狀況,注意學生是否處於極高的認知負荷,或已經認知超載,便能「立即」調整教學內容與速度,協助學生學習。為了注重「即時性」及價格、方便性等,「可攜式腦波儀」最具有硬體上的優勢。
由於「可攜式腦波儀」主要硬體部件已設計完成,發展相應的「演算法」來有效地預測「難度」為現階段的重要目標。本研究以20位大學學生為研究對象,並利用四個難度的數學乘法心算作為試題來進行測驗。為了考量可攜式腦波儀電極貼片的限制,黏貼位置選擇以前額葉及前額葉的左、右側共三點來觀察。另外,參考過去文獻指出額葉區的θ波與工作記憶的關係,因此,為評估受試者感受到的認知負荷,本研究初步以「θ腦波」為演算基礎來分析其與試題難度間的相關性。
研究結果如下:貼在前額葉及前額葉左、右側的數據皆呈高度相關,表示整體的預測力很高,尤其是前額葉右側的位置,相關性最高,預測力約達67%,表示某種程度上我們可以利用額葉區的θ波來預測學習者在學習歷程中感受到的負荷。
Adrian, E. D., & Matthews, B. H. (1934). The interpretation of potential waves in the cortex. The Journal of Physiology, 81(4), 440-471.
Aggleton, J., Shaw, C., & Gaffan, E. (1992). The performance of postencephalitic amnesic subjects on two behavioural tests of memory: concurrent discrimination learning and delayed matching-to-sample. Cortex, 28(3), 359-372.
Antonenko, P., Paas, F., Grabner, R., & Van Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational psychology review, 22(4), 425-438.
Ayres, P. (2006). Impact of reducing intrinsic cognitive load on learning in a mathematical domain. Applied cognitive psychology, 20(3), 287-298.
Ayres, P., & Sweller, J. (1990). Locus of difficulty in multistage mathematics problems. The American Journal of Psychology, 167-193.
Ayres, P. L. (2001). Systematic mathematical errors and cognitive load. Contemporary Educational Psychology, 26(2), 227-248.
Baddeley, A. (1992). WORKING MEMORY. Science, 255(5044), 556-559. doi:10.1126/science.1736359
Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. doi:10.1016/s1364-6613(00)01538-2
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of learning and motivation, 8, 47-89.
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195-1205.
Brouwer, A.-M., Hogervorst, M. A., Van Erp, J. B., Heffelaar, T., Zimmerman, P. H., & Oostenveld, R. (2012). Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of neural engineering, 9(4), 045008.
Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational psychologist, 38(1), 53-61.
Callicott, J. H., Ramsey, N. F., Tallent, K., Bertolino, A., Knable, M. B., Coppola, R., . . . Frank, J. A. (1998). Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology, 18(3), 186-196.
Cave, C. B., & Squire, L. R. (1992). Intact verbal and nonverbal short‐term memory following damage to the human hippocampus. Hippocampus, 2(2), 151-163.
Chandler, P., & Sweller, J. (1991). COGNITIVE LOAD THEORY AND THE FORMAT OF INSTRUCTION. Cognition and Instruction, 8(4), 293-332. doi:10.1207/s1532690xci0804_2
Cohen, N., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampus: Cambridge, MA: MIT Press.
Cooper, N. R., Croft, R. J., Dominey, S. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International journal of psychophysiology, 47(1), 65-74.
D'Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain and cognition, 41(1), 66-86.
Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience & Biobehavioral Reviews, 28(7), 771-784.
Daneman, M., & Carpenter, P. A. (1980). INDIVIDUAL-DIFFERENCES IN WORKING MEMORY AND READING. Journal of Verbal Learning and Verbal Behavior, 19(4), 450-466. doi:10.1016/s0022-5371(80)90312-6
Das, J. P., Naglieri, J. A., & Kirby, J. R. (1994). Assessment of cognitive processes: The PASS theory of intelligence: Allyn & Bacon.
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506.
Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109-120.
Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron, 23(2), 209-226.
Fingelkurts, A., Fingelkurts, A., Krause, C., Kaplan, A., Borisov, S., & Sams, M. (2003). Structural (operational) synchrony of EEG alpha activity during an auditory memory task. Neuroimage, 20(1), 529-542.
Frisk, V., & Milner, B. (1990). The relationship of working memory to the immediate recall of stories following unilateral temporal or frontal lobectomy. Neuropsychologia, 28(2), 121-135.
Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331-349.
Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral cortex, 7(4), 374-385.
Glass, A., & Holyoak, K. (1986). Cognition. NY: Random House.
Gopher, D., & Braune, R. (1984). On the psychophysics of workload: Why bother with subjective measures? Human Factors, 26(5), 519-532.
Hendy, K. C., Hamilton, K. M., & Landry, L. N. (1993). Measuring subjective workload: when is one scale better than many? Human Factors, 35(4), 579-601.
Henke, K., Weber, B., Kneifel, S., Wieser, H. G., & Buck, A. (1999). Human hippocampus associates information in memory. Proceedings of the National Academy of Sciences, 96(10), 5884-5889.
Jansma, J. M., Ramsey, N. F., Coppola, R., & Kahn, R. S. (2000). Specific versus nonspecific brain activity in a parametric N-back task. Neuroimage, 12(6), 688-697.
Jansma, J. M., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic processing. Journal of Cognitive Neuroscience, 13(6), 730-743.
Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral cortex, 12(8), 877-882.
Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in neurosciences, 28(2), 67-72.
Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8), 1395-1399.
Jex, H. R. (1988). Measuring mental workload: Problems, progress, and promises. Advances in Psychology, 52, 5-39.
Just, M. A., & Carpenter, P. A. (1992). A CAPACITY THEORY OF COMPREHENSION - INDIVIDUAL-DIFFERENCES IN WORKING MEMORY. Psychological Review, 99(1), 122-149. doi:10.1037/0033-295x.99.1.122
Klimesch, W., Doppelmayr, M., Pachinger, T., & Ripper, B. (1997). Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neuroscience letters, 238(1), 9-12.
Klimesch, W., Doppelmayr, M., Roehm, D., Pöllhuber, D., & Stadler, W. (2000). Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? Neuroscience letters, 284(1), 97-100.
Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). Paradoxical'alpha synchronization in a memory task. Cognitive Brain Research, 7(4), 493-501.
Klimesch, W., Doppelmayr, M., Stadler, W., Pöllhuber, D., Sauseng, P., & Roehm, D. (2001). Episodic retrieval is reflected by a process specific increase in human electroencephalographic theta activity. Neuroscience letters, 302(1), 49-52.
Krause, C. M., Lang, A. H., Laine, M., Kuusisto, M., & Pörn, B. (1996). Event-related. EEG desynchronization and synchronization during an auditory memory task. Electroencephalography and clinical neurophysiology, 98(4), 319-326.
Kumaran, D., & Maguire, E. A. (2006). The dynamics of hippocampal activation during encoding of overlapping sequences. Neuron, 49(4), 617-629.
Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of neurology, 48(4), 657-661.
Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of educational psychology, 88(1), 49.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52. doi:10.1207/s15326985ep3801_6
McEvoy, L., Smith, M., & Gevins, A. (2000). Test–retest reliability of cognitive EEG. Clinical Neurophysiology, 111(3), 457-463.
Miller, G. (1956). Human memory and the storage of information. IRE Transactions on Information Theory, 2(3), 129-137.
Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control: Cambridge University Press.
Mizuhara, H., Wang, L.-Q., Kobayashi, K., & Yamaguchi, Y. (2005). Long-range EEG phase synchronization during an arithmetic task indexes a coherent cortical network simultaneously measured by fMRI. Neuroimage, 27(3), 553-563.
Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of educational psychology, 87(2), 319.
Nichols, E. A., Kao, Y.-C., Verfaellie, M., & Gabrieli, J. D. (2006). Working memory and long-term memory for faces: Evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus, 16(7), 604.
O'Donnell, R. D., & Eggemeier, F. T. (1986). Workload assessment methodology.
Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature neuroscience, 7(1), 75-79.
Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. Neuroimage, 27(2), 341-356.
Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. European journal of Neuroscience, 9(7), 1329-1339.
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies. Human brain mapping, 25(1), 46-59.
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4. doi:10.1207/s15326985ep3801_1
Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational psychologist, 38(1), 63-71.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of educational psychology, 84(4), 429.
Paas, F. G., Van Merriënboer, J. J., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and motor skills, 79(1), 419-430.
Penfield, W., & Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Archives of Neurology & Psychiatry, 79(5), 475-497.
Pfurtscheller, G., Stancak, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. International journal of psychophysiology, 24(1), 39-46.
Ranganath, C., & D'Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31(5), 865-873.
Roland, P., & Friberg, L. (1985). Localization of cortical areas activated by thinking. Journal of Neurophysiology, 53(5), 1219-1243.
Rubio, S., Díaz, E., Martín, J., & Puente, J. M. (2004). Evaluation of subjective mental workload: A comparison of SWAT, NASA‐TLX, and workload profile methods. Applied Psychology, 53(1), 61-86.
Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G., & Von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences, 95(12), 7092-7096.
Sauseng, P., Klimesch, W., Gruber, W., Doppelmayr, M., Stadler, W., & Schabus, M. (2002). The interplay between theta and alpha oscillations in the human electroencephalogram reflects the transfer of information between memory systems. Neuroscience letters, 324(2), 121-124.
Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025.
Schoenfeld, A. H. (1985). Metacognitive and epistemological issues in mathematical understanding. Teaching and learning mathematical problem solving: Multiple research perspectives, 361-380.
Schon, K., Hasselmo, M. E., LoPresti, M. L., Tricarico, M. D., & Stern, C. E. (2004). Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. Journal of Neuroscience, 24(49), 11088-11097.
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20(1), 11-21.
Simon, H. A. (1975). The functional equivalence of problem solving skills. Cognitive Psychology, 7(2), 268-288.
Skuballa, I. T., Fortunski, C., & Renkl, A. (2015). An eye movement pre-training fosters the comprehension of processes and functions in technical systems. Frontiers in psychology, 6.
Sweller, J. (1988). COGNITIVE LOAD DURING PROBLEM-SOLVING - EFFECTS ON LEARNING. Cognitive Science, 12(2), 257-285. doi:10.1207/s15516709cog1202_4
Sweller, J. (2008). Human cognitive architecture. Handbook of research on educational communications and technology, 369-381.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
Tuladhar, A. M., Huurne, N. t., Schoffelen, J. M., Maris, E., Oostenveld, R., & Jensen, O. (2007). Parieto‐occipital sources account for the increase in alpha activity with working memory load. Human brain mapping, 28(8), 785-792.
van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147-177. doi:10.1007/s10648-005-3951-0
Vanni, S., Revonsuo, A., & Hari, R. (1997). Modulation of the parieto-occipital alpha rhythm during object detection. Journal of Neuroscience, 17(18), 7141-7147.
Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a test and evaluation environment. Human Factors, 35(2), 263-281.
Winterer, G., Coppola, R., Goldberg, T. E., Egan, M. F., Jones, D. W., Sanchez, C. E., & Weinberger, D. R. (2004). Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. American Journal of Psychiatry, 161(3), 490-500.
Xie, B., & Salvendy, G. (2000). Review and reappraisal of modelling and predicting mental workload in single-and multi-task environments. Work & stress, 14(1), 74-99.
Yeh, T. K., Tseng, K. Y., Cho, C. W., Barufaldi, J. P., Lin, M. S., & Chang, C. Y. (2012). Exploring the Impact of Prior Knowledge and Appropriate Feedback on Students' Perceived Cognitive Load and Learning Outcomes: Animation-based earthquakes instruction. International Journal of Science Education, 34(10), 1555-1570. doi:10.1080/09500693.2011.579640
宋曜廷. (2000). 先前知識, 文章結構與多媒體呈現對文章學習的影響 (未出版博士論文). 國立臺灣師範大學, 臺北市.
李晓东, 聂尤彦, 庞爱莲, & 林崇德. (2003). 工作记忆对小学三年级学生解决比较问题的影响. 心理发展与教育, 3, 41-45.
曹寶龍, 劉慧娟, & 林崇德. (2005). 認知負荷對小學生工作記憶資源分配策略的影響: 心理發展與教育.
郭秀緞. (2005). 以認知負荷的觀點探討數學問題設計的適切性. 教育研究, 13, 169-182.
陳密桃, & 陳埩淑. (2003). 多元智能理論在幼兒品格教育教學上的探討.
黃克文. (1996). 認知負荷與個人特質及學習成就之關聯. 國立臺北教育大學國民教育研究所學位論文, 1-153.
黃柏勳. (2003). 認知上的瓶頸─ 認知負荷理論. 教育研究, 55, 71-78.
廖宇璁. (2009). 想像幾何旋轉動作與數學心算之腦電波分析. 臺灣師範大學機電科技研究所學位論文, 1-96.
顏世杰. (2008). 記憶, 概念與心算複雜度在腦波 (EEG) 所呈現的反應與評估.