研究生: |
傅宇謙 Fu, Yu-Cian |
---|---|
論文名稱: |
以化學氣相沉積合成生長錳摻雜鈣鈦礦奈米粒子及其於中孔洞沸石中之限制生長 Chemical Vapor Deposition Synthesis Growth of Manganese-Doped and Spatially-Confined Perovskite Nanoparticles onto Mesoporous Zeolites |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
口試委員: |
闕居振
Chueh, Chu-Chen 謝明惠 Shieh, Ming-Huey |
口試日期: | 2021/08/03 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 中孔洞沸石奈米粒子 、氧化石墨烯 、化學氣相沉積法 、二氧化碳還原 |
英文關鍵詞: | mesoporous zeolite nanoparticles, graphene-oxide, chemical vapor deposition, CO2 reduction reaction |
DOI URL: | http://doi.org/10.6345/NTNU202101183 |
論文種類: | 學術論文 |
相關次數: | 點閱:131 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以高表面積(SBET > 800 m2 / g)的中孔沸石奈米粒子(mesoporous zeolite nanoparticles, MZNs)做為基材,於高溫下(700-900°C)溴化鉛與溴化銫為前驅物進行化學氣相沉積(chemical vapor deposition, CVD)反應,合成中孔洞限制的CsPbBr3/Cs4PrBr6的鈣鈦礦(pervoskite)奈米粒子。鈣鈦礦奈米粒子大小可以藉由前驅物比例及溫度改變加以調控,其電子結構及型貌利用紫外-可見光譜儀、螢光光譜儀、X-光繞射及穿透式電子顯微鏡佐證。合成過程中引入鎂離子及具有未成對電子的錳離子,使摻雜之鈣鈦礦奈米粒子放光具有不同波長,其結構組成、電子結構及自旋特性,以感應偶合電漿質譜、X光繞射光譜、螢光光譜及電子順磁共振光譜儀證實。此外,使用具半導體特性的中孔氧化石墨烯奈米粒子(mesoporous graphene-oxide nanoparticles, MGNs)做為基材時,可有效增進電荷分離效率,於照光下可使二氧化碳還原成一氧化碳,並以紫外-可見光譜儀及螢光光譜佐證其電子結構之變化。無機鈣鈦礦材料具良好的發光及催化效能,未來欲結合中孔洞薄膜材料之生長,生長具大氣穩定之太陽能轉換材料,提供異質結構於中孔洞沸石材料上限制生長之研究。
In this study, mesoporous zeolite nanoparticles (MZNs) with high surface area (SBET>800 m2/g) was used as robust substrates to synthesize spatially confined CsPbBr3/Cs4PrBr6 (perovskite) nanoparticles (PV@MZNs) via chemical vapor deposition (CVD) at high temperature (700-900 °C) with two precursors, CsBr and PbBr2. The grain sizes of the perovskites were modulated by precursor ratios and reaction temperature. Ultraviolet-visible absorption spectroscopy (UV-Vis), fluorescence spectroscopy (FS), X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) were utilized to characterize electronic structures and crystals of PV@MZNs. Magnesium and manganese ions were introduced to dope the perovskites, showing unique phosphorescence property. The characterizations of compositions, electronic and spin structures were assured by induced coupled plasma mass spectrometry, XRD, FS and electron paramagnetic resonance, individually. Moreover, heterostructures for PV@MZNs can be created when mesoporous graphene-oxide nanoparticles (MGNs) were introduced. Charge separation can be observed by fluorescence quenching and photocatalytic CO2 reductions into CO. Inorganic perovskite materials with excellent optical and catalytic performance, combined with mesoporous zeolite thin films (MZTFs) and heterostructures showing confined dimensions on silicon substrates, are rationally targeted for stable ambient solar energy converters.
1. Lu, C.-H.; Biesold-McGee, G. V.; Liu, Y.; Kang, Z.; Lin, Z., Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical Society Reviews 2020, 49 (14), 4953-5007.
2. Shen, W.; Ruan, L.; Shen, Z.; Deng, Z., Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets. Chemical Communications 2018, 54 (22), 2804-2807.
3. Kostopoulou, A.; Brintakis, K.; Nasikas, N. K.; Stratakis, E., Perovskite nanocrystals for energy conversion and storage. Nanophotonics 2019, 8 (10), 1607-1640.
4. Shen, K.; Hu, J.; Liang, Z.; Hu, J.; Sun, H.; Jiang, Z.; Song, F., Emerging Characterizing Techniques in the Fine Structure Observation of Metal Halide Perovskite Crystal. Crystals 2018, 8 (6).
5. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 2013, 6 (6), 1739-1743.
6. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
7. Shin, S. S.; Yeom, E. J.; Yang, W. S.; Hur, S.; Kim, M. G.; Im, J.; Seo, J.; Noh, J. H.; Seok, S. I., Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 2017, 356 (6334), 167.
8. Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; Xu, Z.; Li, N.; Liu, Z.; Chen, Q.; Sun, L.-D.; Yan, C.-H., A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363 (6424), 265.
9. Zhang, T.; Dar, M. I.; Li, G.; Xu, F.; Guo, N.; Grätzel, M.; Zhao, Y., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Science Advances 2017, 3 (9), 1700841.
10. Zhou, Q.; Bai, Z.; Lu, W.-g.; Wang, Y.; Zou, B.; Zhong, H., In Situ Fabrication of Halide Perovskite Nanocrystal-Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights. Advanced Materials 2016, 28 (41), 9163-9168.
11. Zhu, Z.-Y.; Yang, Q.-Q.; Gao, L.-F.; Zhang, L.; Shi, A.-Y.; Sun, C.-L.; Wang, Q.; Zhang, H.-L., Solvent-Free Mechanosynthesis of Composition-Tunable Cesium Lead Halide Perovskite Quantum Dots. The Journal of Physical Chemistry Letters 2017, 8 (7), 1610-1614.
12. Sun, S.; Yuan, D.; Xu, Y.; Wang, A.; Deng, Z., Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. ACS Nano 2016, 10 (3), 3648-3657.
13. Wu, L.; Hu, H.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q.; Yang, D.; Liu, Q.; Zhao, Y.; Sun, B.; Zhang, Q.; Yin, Y., From Nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX3 Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism. Nano Letters 2017, 17 (9), 5799-5804.
14. Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials 2015, 14 (6), 636-642.
15. Eaton, S. W.; Lai, M.; Gibson, N. A.; Wong, A. B.; Dou, L.; Ma, J.; Wang, L.-W.; Leone, S. R.; Yang, P., Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences 2016, 113 (8), 1993.
16. Fu, Y.; Zhu, H.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X. Y.; Jin, S., Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. Nano Letters 2016, 16 (2), 1000-1008.
17. Ding, J.; Du, S.; Zuo, Z.; Zhao, Y.; Cui, H.; Zhan, X., High Detectivity and Rapid Response in Perovskite CsPbBr3 Single-Crystal Photodetector. The Journal of Physical Chemistry C 2017, 121 (9), 4917-4923.
18. Shyamal, S.; Pradhan, N., Halide Perovskite Nanocrystal Photocatalysts for CO2 Reduction: Successes and Challenges. The Journal of Physical Chemistry Letters 2020, 11 (16), 6921-6934.
19. Jing, Q.; Xu, Y.; Su, Y.; Xing, X.; Lu, Z., A systematic study of the synthesis of cesium lead halide nanocrystals: does Cs4PbBr6 or CsPbBr3 form? Nanoscale 2019, 11 (4), 1784-1789.
20. Grandhi, G. K.; Viswanath, N. S. M.; Cho, H. B.; Kim, S. M.; Im, W. B., Highly stable hetero-structured green-emitting cesium lead bromide nanocrystals via ligand-mediated phase control. Nanoscale 2019, 11 (44), 21137-21146.
21. Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9 (4), 4533-4542.
22. Malgras, V.; Tominaka, S.; Ryan, J. W.; Henzie, J.; Takei, T.; Ohara, K.; Yamauchi, Y., Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. Journal of the American Chemical Society 2016, 138 (42), 13874-13881.
23. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L., Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. Journal of the American Chemical Society 2015, 137 (32), 10276-10281.
24. Dutta, A.; Dutta, S. K.; Das Adhikari, S.; Pradhan, N., Tuning the Size of CsPbBr3 Nanocrystals: All at One Constant Temperature. ACS Energy Letters 2018, 3 (2), 329-334.
25. Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D., Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (1), 167-172.
26. Tang, C.; Chen, C.; Xu, W.; Xu, L., Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst. Journal of Materials Chemistry A 2019, 7 (12), 6911-6919.
27. Chen, M.; Zou, Y.; Wu, L.; Pan, Q.; Yang, D.; Hu, H.; Tan, Y.; Zhong, Q.; Xu, Y.; Liu, H.; Sun, B.; Zhang, Q., Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Advanced Functional Materials 2017, 27 (23), 1701121.
28. Zhao, Y.; Wang, Y.; Duan, J.; Yang, X.; Tang, Q., Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells. Journal of Materials Chemistry A 2019, 7 (12), 6877-6882.
29. Saidaminov, M. I.; Mohammed, O. F.; Bakr, O. M., Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters 2017, 2 (4), 889-896.
30. Lin, H.; Zhou, C.; Tian, Y.; Siegrist, T.; Ma, B., Low-Dimensional Organometal Halide Perovskites. ACS Energy Letters 2018, 3 (1), 54-62.
31. Akkerman, Q. A.; Abdelhady, A. L.; Manna, L., Zero-Dimensional Cesium Lead Halides: History, Properties, and Challenges. The Journal of Physical Chemistry Letters 2018, 9 (9), 2326-2337.
32. Zhou, C.; Lin, H.; He, Q.; Xu, L.; Worku, M.; Chaaban, M.; Lee, S.; Shi, X.; Du, M.-H.; Ma, B., Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering: R: Reports 2019, 137, 38-65.
33. Edvinsson, T., Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures. 2018, 5 (9), 180387.
34. Palazon, F.; Urso, C.; De Trizio, L.; Akkerman, Q.; Marras, S.; Locardi, F.; Nelli, I.; Ferretti, M.; Prato, M.; Manna, L., Postsynthesis Transformation of Insulating Cs4PbBr6 Nanocrystals into Bright Perovskite CsPbBr3 through Physical and Chemical Extraction of CsBr. ACS Energy Letters 2017, 2 (10), 2445-2448.
35. Wen, J.-R.; Roman, B. J.; Rodriguez Ortiz, F. A.; Mireles Villegas, N.; Porcellino, N.; Sheldon, M., Chemical Availability of Bromide Dictates CsPbBr3 Nanocrystal Growth. Chemistry of Materials 2019, 31 (20), 8551-8557.
36. Wang, H.-C.; Lin, S.-Y.; Tang, A.-C.; Singh, B. P.; Tong, H.-C.; Chen, C.-Y.; Lee, Y.-C.; Tsai, T.-L.; Liu, R.-S., Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. Angewandte Chemie International Edition 2016, 55 (28), 7924-7929.
37. Dirin, D. N.; Benin, B. M.; Yakunin, S.; Krumeich, F.; Raino, G.; Frison, R.; Kovalenko, M. V., Microcarrier-Assisted Inorganic Shelling of Lead Halide Perovskite Nanocrystals. ACS Nano 2019, 13 (10), 11642-11652.
38. Chen, Y.-M.; Zhou, Y.; Zhao, Q.; Zhang, J.-Y.; Ma, J.-P.; Xuan, T.-T.; Guo, S.-Q.; Yong, Z.-J.; Wang, J.; Kuroiwa, Y.; Moriyoshi, C.; Sun, H.-T., Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application. ACS Applied Materials & Interfaces 2018, 10 (18), 15905-15912.
39. Wang, B.; Zhang, C.; Zheng, W.; Zhang, Q.; Bao, Z.; Kong, L.; Li, L., Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chemistry of Materials 2020, 32 (1), 308-314.
40. Das, S.; De, A.; Samanta, A., Ambient Condition Mg2+ Doping Producing Highly Luminescent Green- and Violet-Emitting Perovskite Nanocrystals with Reduced Toxicity and Enhanced Stability. The Journal of Physical Chemistry Letters 2020, 11 (3), 1178-1188.
41. Berends, A. C.; de Mello Donega, C., Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. The Journal of Physical Chemistry Letters 2017, 8 (17), 4077-4090.
42. Chen, J.; Gan, L.; Zhuge, F.; Li, H.; Song, J.; Zeng, H.; Zhai, T., A Ternary Solvent Method for Large-Sized Two-Dimensional Perovskites. Angewandte Chemie International Edition 2017, 56 (9), 2390-2394.
43. Saidaminov, M. I.; Almutlaq, J.; Sarmah, S.; Dursun, I.; Zhumekenov, A. A.; Begum, R.; Pan, J.; Cho, N.; Mohammed, O. F.; Bakr, O. M., Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids. ACS Energy Letters 2016, 1 (4), 840-845.
44. Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; Wei, Y.; Guo, Q.; Ke, Y.; Yu, M.; Jin, Y.; Liu, Y.; Ding, Q.; Di, D.; Yang, L.; Xing, G.; Tian, H.; Jin, C.; Gao, F.; Friend, R. H.; Wang, J.; Huang, W., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics 2016, 10 (11), 699-704.
45. Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L., Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction. Chemistry – A European Journal 2017, 23 (40), 9481-9485.
46. Liu, Y.-W.; Guo, S.-H.; You, S.-Q.; Sun, C.-Y.; Wang, X.-L.; Zhao, L.; Su, Z.-M., Mn-doped CsPb(Br/Cl)3 mixed-halide perovskites for CO2 photoreduction. Nanotechnology 2020, 31 (21), 215605.
47. Parobek, D.; Dong, Y.; Qiao, T.; Son, D. H., Direct Hot-Injection Synthesis of Mn-Doped CsPbBr3 Nanocrystals. Chemistry of Materials 2018, 30 (9), 2939-2944.
48. Das Adhikari, S.; Guria, A. K.; Pradhan, N., Insights of Doping and the Photoluminescence Properties of Mn-Doped Perovskite Nanocrystals. The Journal of Physical Chemistry Letters 2019, 10 (9), 2250-2257.
49. Wang, Q.; Zhang, X.; Jin, Z.; Zhang, J.; Gao, Z.; Li, Y.; Liu, S. F., Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells. ACS Energy Letters 2017, 2 (7), 1479-1486.
50. Nabi, A., The electronic and the magnetic properties of Mn doped wurtzite CdS: First-principles calculations. Computational Materials Science 2016, 112, 210-218.
51. Liu, Q.; Liu, K.; Liang, Y.; Sun, J.; Dong, L.; Shan, C.-X., Gram-scale and solvent-free synthesis of Mn-doped lead halide perovskite nanocrystals. Journal of Alloys and Compounds 2020, 815, 152393.
52. Ricciarelli, D.; Mosconi, E.; Merabet, B.; Bizzarri, O.; De Angelis, F., Electronic Properties and Carrier Trapping in Bi and Mn Co-doped CsPbCl3 Perovskite. The Journal of Physical Chemistry Letters 2020, 11 (14), 5482-5489.
53. Wang, S.; Leng, J.; Yin, Y.; Liu, J.; Wu, K.; Jin, S., Ultrafast Dopant-Induced Exciton Auger-like Recombination in Mn-Doped Perovskite Nanocrystals. ACS Energy Letters 2020, 5 (1), 328-334.
54. Reim, N.; Littig, A.; Behn, D.; Mews, A., Controlled Electrodeposition of Bismuth Nanocatalysts for the Solution–Liquid–Solid Synthesis of CdSe Nanowires on Transparent Conductive Substrates. Journal of the American Chemical Society 2013, 135 (49), 18520-18527.
55. Wang, F.; Dong, A.; Buhro, W. E., Solution–Liquid–Solid Synthesis, Properties, and Applications of One-Dimensional Colloidal Semiconductor Nanorods and Nanowires. Chemical Reviews 2016, 116 (18), 10888-10933.
56. Yang, X.; Pu, C.; Qin, H.; Liu, S.; Xu, Z.; Peng, X., Temperature- and Mn2+ Concentration-Dependent Emission Properties of Mn2+-Doped ZnSe Nanocrystals. Journal of the American Chemical Society 2019, 141 (6), 2288-2298.
57. De, A.; Mondal, N.; Samanta, A., Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale 2017, 9 (43), 16722-16727.
58. Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C.; Chen, K.-H., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5 (1), 262-268.
59. Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A., Heterojunction Photocatalysts. Advanced Materials 2017, 29 (20), 1601694.
60. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Journal of the American Chemical Society 2017, 139 (16), 5660-5663.
61. Zhang, Q.; Wang, B.; Zheng, W.; Kong, L.; Wan, Q.; Zhang, C.; Li, Z.; Cao, X.; Liu, M.; Li, L., Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nature Communications 2020, 11 (1), 31.