簡易檢索 / 詳目顯示

研究生: 許宜婷
Hsu, Yi-Ting
論文名稱: 應用工程設計思考的STEM專題本位學習活動對職前科技教師工程設計思考之影響
The Effects of the Application of Engineering Design Thinking for STEM Project-Based Learning on Preservice Technology Teachers' Engineering Design Thinking Cognitive Structures
指導教授: 林坤誼
Lin, Kuen-Yi
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 259
中文關鍵詞: 工程設計流程工程設計思考語意流程圖STEM專題本位學習
英文關鍵詞: Engineering-Designed Instruction, Engineering Design Thinking, Flow Maps, STEM, PBL
DOI URL: https://doi.org/10.6345/NTNU202204960
論文種類: 學術論文
相關次數: 點閱:377下載:93
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的主要目的著重在探究透過「工程設計流程」與「問題解決流程」的教授應用工程設計思考的「STEM專題本位學習之鼠夾車實作活動」,以了解職前科技教師工程設計思考之認知結構。而為了達到此一目的,本研究主要採用準實驗研究法,並針對臺北市某一所師資培育機構自然與生活科技科的職前科技教師為對象,其中實驗組為15人、控制組為13人。在前後測的評量方面以「語意流程圖析法」將訪談內容繪製成語意流程圖,並配合內容分析法藉以分析職前科技教師的認知結構及訊息處理模式,針對符合工程設計思考流程的標竿個案進行分析探討,以進一步了解理想的職前科技教師所應具備的工程設計思考之認知結構。研究結果發現兩種教學法對於職前科技教師的測驗,不論認知結構的「量」與「質」及訊息處理策略的遷移均有進步效果,但是兩者之間在統計上並沒有顯著的差異;而標竿個案職前科技教師在高階訊息處理策略的使用和認知結構的可得性上仍有進步空間。依據本研究資料分析的結果,主要獲致以下研究結論:(1)職前科技教師的工程設計思考之認知結構於可得性及高階訊息處理策略有待強化;(2)工程設計流程有助於職前科技教師工程設計思考之認知結構和訊息處理策略,但效果仍有待強化;(3)標竿個案在認知結構各面向大致完整,但於高階訊息處理策略仍可再做進一步加強。

This study was conducted with a quasi-experimental research design. The subjects were from National Taiwan Normal University in Taipei. Fifteen preservice technology teachers were assigned to experimental group, while thirteen preservice technology teachers were assigned to control group. The study is respectively constructed by “engineering-designed instruction” and “problem-solving instruction” methods. In order to take engineering design thinking into practice, “STEM project-based learning for the mousetrap car” as introduced. Before and after the teaching process, the researcher interviewed all preservice technology teachers with the “flow maps” method. The interview data were then plotted as “flow maps” in order to analyze the preservice technology teachers’ cognitive structures and information processing models. Moreover, the cognitive structures and the information processing strategies were also investigated through a series of content analysis. This research was also an accordance of the preservice technology teachers' narrative toward engineering design thinking of concepts in the benchmark case. The research analize the completeness of the conceptual target and the data of each construction.This research displayed that the preservice technology teachers’ test scores in both teaching methods in “Engineering Design Thinking” section was exhibited significant improvement, but no significant differences were found between the two groups. The main findings feature: (1) The concepts with “availability” and “higher-level information processing strategies” need to be enhanced. (2) The engineering-designed instruction is effective to enhance preservice technology teachers’ concept learning and knowledge construction, but the effect remains to be strengthened. (3) The preservice technology teachers who are will known success in engineering design thinking but need to improve their “higher-level information processing strategies”.

謝 誌 i 中文摘要 iii ABSTRACT V 目 錄 vii 表 次 ix 圖 次 xi 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 6 第三節 研究範圍與限制 9 第四節 重要名詞釋義 12 第二章 文獻探討 19 第一節 工程設計思考19 第二節 STEM專題本位學習活動 37 第三節 語意流程圖析法 48 第三章 研究方法 63 第一節 研究架構 63 第二節 研究對象 67 第三節 研究流程 68 第四節 研究工具 73 第五節 資料分析與詮釋 83 第四章 研究結果與討論 105 第一節 職前科技教師的工程設計思考認知結構 105 第二節 工程設計流程對職前科技教師建構工程設計思考認知結構之影響 112 第三節 工程設計流程對職前科技教師建構工程設計思考訊息處理策略之影響 132 第四節 標竿職前科技教師的工程設計思考認知結構 151 第五章 結論與建議 169 第一節 結論 169 第二節 建議 176 參考文獻 181 附錄一 職前科技教師教學前後語意流程圖 193

一、中文部分
夏林清等(譯)(1997)。行動研究方法導論-教師動手做研究(原作者:Altrichter, Poach & Smomekh)。臺北市:遠流出版社。
吳莉君(譯)(2010)。設計思考改造世界(原作者:Brown, T.)。臺北市:聯經。
王錦堂(譯)(1988)。設計方法:人類前途的根源(原作者:Jones, J. C.)。臺北市:徐氏基金會。
楊路(譯)(1972)。為真實世界設計(原作者:Victor P.)。臺北市:五南。
十二年國民基本教育課程研究發展會(2015)。十二年國民基本教育科技領域課程綱要草案。
江淑卿、郭生玉(1997)。不同學習過程的概念構圖策略對促進知識結構專家化與理解能力之效果研究,師大學報:教育類,42,1-16。
余民寧(1997)。有意義的學習:概念構圖之研究。臺北:商鼎出版社。
林清山譯(1991)。教育心理學-認知取向。臺北:遠流。
林清山(2002)。心理與教育統計學。臺北市:東華。
吳宗立(1999)。訊息處理的認知歷程與教學策略。教育實習輔導季刊,4(1),39-45。
吳芝儀、李奉儒(1995)。質的評鑑與研究。桂冠圖書公司。
吳穎沺、蔡今中(2005)。建構主義式的科學學習活動對國小高年級學生認知結構之影響-以「電與磁」單元為例。科學教育學刊,13,387-411。
邱皓政(2005)。量化研究法(二):統計原理與分析技術SPSS中文視窗版操作實務詳析。臺北市:雙葉書廊。
徐新逸(2001)。如何利用網路幫助孩子成為研究高手?網路專題式學習與教學創新。臺灣教育,607,25-34。
國家教育研究院(2014)。十二年國民基本教育課程綱要。2015年9月14日,取自http://www.naer.edu.tw/ezfiles/0/1000/attach/15/pta_2279_8619537_09968.pdf
陳可恭(2002)。系統思維在科學探究與學習上的意涵及應用。科學教育月刊,252,2-13。
黃瑞琴(1997)。質的教育研究法。臺北:心理出版社。
張民杰等聯合編撰(2014)。夥伴協作主動學習。臺北市:臺灣師範大學。
張瓊、于祺明、劉文君(1994)。科學理論模型的建構。臺北市:淑馨出版社。
鄭如雯(2008)。專題式學習探析及其在教育上的啟示。學校行政雙月刊,57,147-164。
蔡錫錚、李建寬、葉則亮、張佩芬(2007)。新手設計行為與思考模式探討。中國機械工程學會第二十四屆全國學術研討會論文集。
羅希哲、蔡慧音、曾國鴻(2011)。高中女生STEM網路專題式合作學習之研究。高雄師大學報,30,41-61。
蘇懋康(1988)。系統動力學原理及應用。中國上海:上海交通大學出版社。

二、英文部分
Accreditation Board for Engineering and Technology (ABET)(2000). Engineering criteria 2000: Criteria for accrediting programs in engineering in the United States, 3^rd edn 2000 See. http://www.abet.org/downloads.htm download EAC Criteria for 2000-01 (Includes EC2000), 32-34.
Accreditation Board for Engineering and Technology (ABET)(2013). Criteria for accrediting engineering programs, 2013-2014. Retrieved from http://www.abet.org/DisplayTemplates/DocsHandbook.aspx?id=3149
American Association for the Advancement of Science (1993). Benchmarks for science literacy. New York: Oxford University Press.
Anderson, O. R. (1992). Some interrelationships between constructivist model of learning and current neurobiological theory, with implications for science education. Journal of Research in Science Teaching, 29, 1037-1058.
Anderson, O. R., & Demetrius, O. J. (1993). A flow-map method of representing cognitive structure based on respondents’ narrative using science content. Journal of Research in Science Teaching, 30(8), 953-969.
Anderson, O. R., Randle, D., & Covotsos, T. (2001). The role of ideational networks in laboratory inquiry learning and knowledge of evolution among seventh grade students. Science Education, 85(4), 410-425.
Anderson, T. D. (2006). Uncertainty in action: Observing information seeking within the creative process of scholarly research. Information Research, 12(1), 1-5.
Atman, C.J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379.
Aubusson, P. (2005). Evolution from a Problem-Based to a Project-Based Secondary Teacher Education Program: Challenges, Dilemmas and Possibilities. G. Hoban (ed.), The Missing Links in Teacher Education Design, 37-55.
Barrick, M.R., Stewart, G.L., Neubert, M.J., and Mount, M.K., (1998). “Relating Member Ability and Personality to Work-Team Processes and Team Effectiveness,” Journal of Applied Psychology, 83(3), 377-391.
Baumann, N., & Kuhl, J. (2002). Intuition, affect, and personality: Unconscious coherence judgments and self-regulation of negative affect. Journal of Personality and Social Psychology, 83(5), 1213-1223.
Bischoff, P. J., & Anderson, O. R. (1998). A case study analysis of the development of knowledge schema, ideational network, and higher cognitive operations among high school students who studied ecology. School Science and Mathematics, 98(5), 228-237.
Blumenfeld, PC, Soloway, E., Marx, RW., Krajcik, JS., Guzdial, M. & Palincsar, A. (1991). Motivating project-based learning: sustaining the doing, supporting the learning. Educational Psychologist, 26(3-4), 369-398.
Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education, 63(10), 873-878.
Box, G. E. P., & Liu, P. T. Y. (1999). “Statistics as a Catalyst to Learning by Scientific Method,” Journal of Quality Technology, 31(1), 1-29.
Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: National Science Teachers Association.
ChanLin, L.J. (2008). Technology integration applied to project-based learning in science. Innovations in Education and Teaching International. 45(1), 55-65.
Collins, A. M. & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, 240-247.
Cony, R. D., Rosenman, M. A., Radford, A. D. & Gero, J. S. (1990). Knowledge-Based Design Systems, Addison-Wesley Publishing Company.
Delisle, R. (1997). How to use problem-based learning in the classroom. Alexandria, VA: Association for Supervision and Curriculum Development.
Dhindsa, H. S. & Anderson, O. R. (2004). Using a conceptual-change approach to help preservice science teachers reorganize their knowledge structures for constructivist teaching. Journal of Science Teacher Education, 15(1), 63-85.
Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. Educational Psychologist, 33(2), 109-128.
Doyle, J. K. (1997). “The Cognitive Psychology of Systems Thinking,” System Dynamics Review, 13(3), 253-265.
Driver, R., Asoko, H., Leach, J.,Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.
Driver, R, & Bell, B. (1986). Students’ thinking and the learning of science: A constructivist view. School Science Review, 67(240), 443-456.
Dym, C. L. & Little, P. (2004). Engineering Design: A Project-Based Introduction, New York.
Dym, C. L. , Agogino, A. M. , Eris, O, Frey, D. D. & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of engineering education, 94(1), 103-120.
Gagné, R. M. (1977). The Conditions of learning (3rd ed.). N.Y. : Holt, Rinehart and Winston.
Gagné, R. M., Briggs, L. J., & Wager, W. W. (1992). Principles of instructional design. Forth Worth, TX: Harcourt Brace Jovanovich College Publishers.
Gunstone, R. F. (1994). The importance of specific science content in the enhancement of metacognition. In P. J. Fensham, R. F. Gunston & R. T. White (eds.), The content of science: A constructivist approach to its teaching and learning. London: Falmer Press.
Hazelrigg, G. A. (1999). “An Axiomatic Framework for Engineering Design,” Journal of Mechanical Design, 121, 342-347.
Hsiao, H. C. (1997). The improvement of creativity and productivity of Technological workers through partnership between university and industry. Taipei, Taiwan: The International Conference on Creativity Development in Technological Education and Training.
Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D., & Carberry, A. (2011). Infusing engineering design into high school STEM courses. National Center for Engineering and Technology Education.
Laboy-Rush, D. (2011). Integrated STEM education through project-based learning. Retrieved September 9, 2015, from http://www.learning.com/pdfs/STEM-White-Paper-101207.pdf
Lai, C. S. (2005). "The study of Big6 skill applied in project-based learning of social in elementary school."
Linder, B. M. (1999). Understanding estimation and its relation to engineering education, Doctoral Dissertation, Cambridge, Mass.: Massachusetts institute of technology.
Massachusetts Depatment of Education (2001). Science and technology / engineering framework. Retrieved September 14, 2015, from http://www.doe.mass.edu/frameworks/scitech/2001/
Milentijevic, I., Ciric, V., & Vojinovic, O. (2008). Version control in project-based learning. Computer & Education, 50, 1331-1338.
Mills, J. E. & Treagust, D. F. (2003). "Engineering Education – Is Problem-based or Project-based Learning the Answer?" Australasian J. of Engng. Educ 04.
Minneman, S. (1991). The Social Construction of a Technical Reality, Doctoral Dissertation, Stanford, California: Stanford University.
Mintzes, J. J., Wanderse, J. H., & Novak, J. D. (1998). Teaching Science For Understanding. London: Academic Press.
Moursund, D. (1999). Project-based learning using information technology. Eugene, OR: International Society for Technology in Education.
National Science Board (2009). STEM education recommendations for the president-elect obama administration. Washington, D.C.: National Science Foundation.
Ng, C. (2004). “Findings from a web based survey of degree programs in engineering systems,” Engineering systems symposium, Cambridge, Mass. (See also esd.mit.edu/symposium/pdfs/papers/ng.pdf.)
Novak, J. D., & Gowin, D. B. (1984). Concept mapping for meaningful learning. In learning how to learn, 15-54. NY: Cambridge University Press.
Perrenet, J.C., Bouhuijs, P.A.J. & Smits, J.G.M.M., (2000). The suitability of problem-based learning for engineering education: theory and practice. Teaching in higher education, 5(3), 345-358.
Reilly, R. R., Lynn, G. S., & Aronson, Z.L. (2002). “The Role of Personality in New Product Development Team Performance,” Journal of Engineering & Technology Management, 19(1), 39-58.
Sally, & Jaumall A. (2010). STEM comes to preschool. Young Children, 65(5), 12-14.
Sanders, M. (2009). STEM, STEM education, STEM mania. The Technology Teacher, 68(4), 20-26.
Shavelson, R. J. (1974). Methods for examining representations of a subject-matter structure in a student's memory. Journal of Research in Science Teaching, 11, 231-249.
Sheppard, S. D. (2003). “A description of engineering: An essential backdrop for interpreting engineering education,” Proceedings (CD), Mudd Design Workshop IV, Claremont, Cal.: Harvey Mudd College.
Siegler, R. S. (1976). Three aspects of cognitive development* 1. Cognitive Psychology, 8(4), 481-520.
Solomon (2003). Project-based learning: A primer. Technology & Learning, 23(6), 20-30.
Sternberg, R. J. & Lubart, T. I. (1995). Defying the crowd : Cultivating creativity in a culture of conformity. New York : The Free Press, A Division of Simon & Schuster Inc.
Sternberg, R. J. (2003). Cognitive Psychology, (3rd ed.) Wadsworth: United States of America.
Stohlmann M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34.
Sweeney, L.B., and Sterman, J.D. (2004). “Bathtub Dynamics: Initial Results of a Systems Thinking Inventory,” System Dynamics Review.
Tsai, C. C. (1998a). Science learning and constructivism. Curriculum and Teaching, 13, 31-52.
Tsai, C. C. (1999b). Content analysis of Taiwanese 14 year olds’ information processing operations following physics instruction, with relations to science attainment and scientific epistemological beliefs. Research in Science and Technological Education, 17, 125-138.
Tsai, C. C. (2000). Enhancing science instruction: The use of “conflict maps”. International Journal of Science Education, 22, 285-302.
Tsai, C. C. (2001). Probing students’ cognitive structures in science: The use of a flow map method coupled with a meta-listening technique. Studies in Educational Evaluation, 27, 257-268.
Tsai, C. C., & Huang, C. M. (2001). Development of cognitive structures and information processing strategies of elementary school students learning about biological reproduction. Journal of Biological Education, 36, 21-26.
Tsai, C.C., & Huang, C. M. (2002). Exploring students’ cognitive structures in learning science: A review of relevant methods. Journal of Biological Education, 36(4), 163-196.
Tsupros, N., Kohler R., & Hallinen, J. (2009). STEM education: A project to identify the missing components. Intermediate Unit 1 and Carnegie Mellon, Pennsylvania.
Wanderse, J. H., Mintzes, J. J. & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gabel (eds.), Handbook of research on science teaching and learning. NY: Macmillan.
West, L. H. T., Fensham, P. J., & Garrard, J. E. (1985). Describing the cognitive structures of learners following instruction in chemistry. In L. H. T. West & A. L. Pines (eds.), Cognitive structures and conceptual change, 29-48. Orlando: Academic Press.
Wu, Y. T., & Tsai, C. C. (2005). Effects of constructivist-oriented instruction on elementary school students’ cognitive structures. Journal of Biological Education, 39(3), 113-119.

下載圖示
QR CODE