研究生: |
詹璦綺 Chan, Ai-Ci |
---|---|
論文名稱: |
胡椒酸衍生物用於加速胰島類澱粉蛋白聚集 Derivative of piperic acid accelerates the aggregation of islet amyloid polypeptide |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
口試委員: |
劉維民
Liu, Wei Min 葉怡均 Yeh, Yi Chun |
口試日期: | 2021/07/20 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 類澱粉纖維 、第二型糖尿病 、胡椒酸衍生物 |
英文關鍵詞: | Amyloid fibril, Diabetes mellitus type 2, Piperic acid derivatives |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100814 |
論文種類: | 學術論文 |
相關次數: | 點閱:117 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質錯誤折疊形成纖維狀沉積物可能會破壞細胞並導致組織和器官的退化。這種類型的疾病被泛稱為類澱粉蛋白沉積症。例如,人類胰島類澱粉蛋白(Human islet amyloid polypeptide, hIAPP)的纖維狀沉積與第二型糖尿病的病理密切相關。過去文獻顯示聚集過程中的中間體比最終的纖維沉積物更具毒性,因此開發足以影響類澱粉蛋白聚集的化合物被視為解決類澱粉蛋白沉積症的方法之一。
我們團隊過去已測試多種胡椒酸衍生物,其中小分子PAD-13可以加速人類胰島類澱粉蛋白聚集,我們期望此分子可以減少有毒中間體的存在,並藉以減少細胞死亡。本研究將先深入探討 PAD-13 和 hIAPP 之間的相互作用。
由硫磺素T螢光觀察類澱粉蛋白之形成以及添加預先形成類澱粉蛋白作為核種的核誘發實驗,顯示PAD-13加速hIAPP聚集為透過促進初級(Primary nucleation)和次級成核(Secondary nucleation)來達成。hIAPP在有無PAD-13影響下所形成的類澱粉蛋白纖維於TEM 和ATR-FTIR 結果中顯示兩者具有非常相似的形態。在硫磺素T動力學中於PAD-13影響下觀察到螢光強度增加,由凝膠電泳證明其原因並非纖維數量增加,我們推測可能是參與hIAPP聚集的過程中,PAD-13與硫磺素T產生交互作用力造成。圓二色光譜時間進程(Time-course)實驗表示PAD-13 加速了hIAPP的構象變化。我們對 hIAPP 的兩個突變進行分析,確認hIAPP 中精胺酸(Arginine, Arg)和離胺酸(Lysine, Lys)皆是PAD-13與hIAPP相互作用的關鍵殘基。
Protein misfolding and formation of fibrous deposits may destroy the cells and lead to degeneration of the tissues and organs. This type of disease is called amyloidosis. For example, amyloid deposit of human islet amyloid polypeptide (hIAPP) in pancreatic islets is closely associated with the pathology of type 2 diabetes. It has been reported that the intermediate in the aggregation process is more toxic than the final fibrous deposits, so the discovery of a compound that affects amyloid protein aggregation is regarded as a solution to amyloidosis.
Previously a variety of piperic acid derivatives, has been tested by our team. One of a small molecule PAD-13 which can accelerate the accumulation of islet amyloid will be expected to reduce the presence of toxic intermediates and reduce the cell death. This study will get to the meat of the interaction between PAD-13 and hIAPP.
From hIAPP amyloid fibril formation monitored by thioflavin T fluorescence and added with the condition that added pre-formed amyloid fibrils as seeds, it was shown that PAD-13 will enhance the rate of aggregation by promoting primary and secondary nucleation. Amyloid fibrils formed from hIAPP in the absence or presence of PAD-13 share very similar morphology observed in TEM and ATR-FTIR studies. The fluorescence intensity increased when hIAPP and more PAD-13 co-culture in the thioflavin T kinetic, but we have ruled out the possibility that increased fibers formed in the reaction suggested by SDS-PAGE. It seems that PAD-13 will interact with ThT while in the process of hIAPP aggregation. Time course of circular dichroism spectra imply that PAD-13 will accelerate the conformational change of hIAPP. In this study, it was also revealed that arginine and lysine of hIAPP are both key residues that PAD-13 may interacts with.
[1]Hardy, J., & Selkoe, D. J. (2002). The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics. Science, 297(5580), 353-356.
[2]Masters, C. L., & Selkoe, D. J. (2012). Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harbor perspectives in medicine, 2(6), a006262-a006262.
[3]Jankovic, J., & Poewe, W. (2012). Therapies in Parkinson's disease. Current Opinion in Neurology, 25(4), 433-447.
[4]Jankovic, J. (2008). Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry, 79(4), 368-376.
[5]Schulz-Schaeffer, W. J. (2010). The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathologica, 120(2), 131-143.
[6]Saito, Y., Kawashima, A., Ruberu, N. N., Fujiwara, H., Koyama, S., Sawabe, M., . . . Murayama, S. (2003). Accumulation of Phosphorylated α-Synuclein in Aging Human Brain. Journal of Neuropathology & Experimental Neurology, 62(6), 644-654.
[7]Jurgens, C. A., Toukatly, M. N., Fligner, C. L., Udayasankar, J., Subramanian, S. L., Zraika, S., . . . Hull, R. L. (2011). β-Cell Loss and β-Cell Apoptosis in Human Type 2 Diabetes Are Related to Islet Amyloid Deposition. The American Journal of Pathology, 178(6), 2632-2640.
[8]Almeida, Z. L., & Brito, R. M. M. (2020). Structure and Aggregation Mechanisms in Amyloids. Molecules, 25(5).
[9]Hellstrand, E., Boland, B., Walsh, D. M., & Linse, S. (2010). Amyloid β-Protein Aggregation Produces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process. ACS Chemical Neuroscience, 1(1), 13-18.
[10]Divry, P., & Florkin, M. (1927). Sur les proprietes optiques de l'amyloide. C. R. Soc. Biol., 97, 1808-1810.
[11]Protein misfolding diseases : methods and protocols. (2018). New York, NY: Springer Science+Business Media.
[12]Moran, S. D., & Zanni, M. T. (2014). How to Get Insight into Amyloid Structure and Formation from Infrared Spectroscopy. The Journal of Physical Chemistry Letters, 5(11), 1984-1993.
[13]Li, D., & Liu, C. (2020). Structural Diversity of Amyloid Fibrils and Advances in Their Structure Determination. Biochemistry, 59(5), 639-646.
[14]Maji, S. K., Wang, L., Greenwald, J., & Riek, R. (2009). Structure–activity relationship of amyloid fibrils. FEBS letters, 583(16), 2610-2617.
[15]Saghir, A. E., Farrugia, G., & Vassallo, N. (2021). The human islet amyloid polypeptide in protein misfolding disorders: Mechanisms of aggregation and interaction with biomembranes. Chemistry and Physics of Lipids, 234, 105010.
[16]Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 14(2), 88-98.
[17]DeFronzo, R. A. (1988). The triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes, 37(6), 667-687.
[18]DeFronzo, R. A. (2004). Pathogenesis of type 2 diabetes mellitus. Medical clinics, 88(4), 787-835.
[19]Organization, W. H. (2000). Obesity: preventing and managing the global epidemic.
[20]Acs, A., Ludwig, C., Bereza, B., Einarson, T., & Panton, U. (2017). Prevalence of cardiovascular disease in Type 2 diabetes: a global systematic review. Value in Health, 20(9), A475.
[21]Einarson, T. R., Acs, A., Ludwig, C., & Panton, U. H. (2018). Economic Burden of Cardiovascular Disease in Type 2 Diabetes: A Systematic Review. Value in Health, 21(7), 881-890.
[22]Sanke, T., Bell, G. I., Sample, C., Rubenstein, A. H., & Steiner, D. F. (1988). An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. Journal of Biological Chemistry, 263(33), 17243-17246.
[23]Marzban, L., Trigo-Gonzalez, G., & Verchere, C. B. (2005). Processing of Pro-Islet Amyloid Polypeptide in the Constitutive and Regulated Secretory Pathways of β Cells. Molecular Endocrinology, 19(8), 2154-2163.
[24]Marzban, L., Soukhatcheva, G., & Verchere, C. B. (2005). Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in β-cells. Endocrinology, 146(4), 1808-1817.
[25]Qiao, Q., Bowman, G. R., & Huang, X. (2013). Dynamics of an intrinsically disordered protein reveal metastable conformations that potentially seed aggregation. Journal of the American Chemical Society, 135(43), 16092-16101.
[26]Wilcox, G. (2005). Insulin and insulin resistance. Clin Biochem Rev, 26(2), 19-39.
[27]Saini, R. K., Goyal, D., & Goyal, B. (2020). Targeting Human Islet Amyloid Polypeptide Aggregation and Toxicity in Type 2 Diabetes: An Overview of Peptide-Based Inhibitors. Chemical Research in Toxicology, 33(11), 2719-2738.
[28]Opie, E. L. (1901). THE RELATION OE DIABETES MELLITUS TO LESIONS OF THE PANCREAS. HYALINE DEGENERATION OF THE ISLANDS OE LANGERHANS. The Journal of experimental medicine, 5(5), 527-540.
[29]Kahn, S. E., Andrikopoulos, S., & Verchere, C. B. (1999). Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes, 48(2), 241-253.
[30]Westermark, P. (1994). Amyloid and polypeptide hormones: what is their interrelationship? Amyloid, 1(1), 47-60.
[31]Clark, A., Wells, C. A., Buley, I. D., Cruickshank, J. K., Vanhegan, R. I., Matthews, D. R., . . . Turner, R. C. (1988). Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res, 9(4), 151-159.
[32]Hull, R. L., Westermark, G. T., Westermark, P., & Kahn, S. E. (2004). Islet Amyloid: A Critical Entity in the Pathogenesis of Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 89(8), 3629-3643.
[33]Sakagashira, S., Hiddinga, H. J., Tateishi, K., Sanke, T., Hanabusa, T., Nanjo, K., & Eberhardt, N. L. (2000). S20G Mutant Amylin Exhibits Increased in Vitro Amyloidogenicity and Increased Intracellular Cytotoxicity Compared to Wild-Type Amylin. The American Journal of Pathology, 157(6), 2101-2109.
[34]Cao, P., Tu, L. H., Abedini, A., Levsh, O., Akter, R., Patsalo, V., . . . Raleigh, D. P. (2012). Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue 20. Journal of Molecular Biology, 421(2-3), 282-295.
[35]Engel, M. F., Yigittop, H., Elgersma, R. C., Rijkers, D. T., Liskamp, R. M., de Kruijff, B., . . . Killian, J. A. (2006). Islet amyloid polypeptide inserts into phospholipid monolayers as monomer. Journal of Molecular Biology, 356(3), 783-789.
[36]Sasahara, K., Morigaki, K., Okazaki, T., & Hamada, D. (2012). Binding of islet amyloid polypeptide to supported lipid bilayers and amyloid aggregation at the membranes. Biochemistry, 51(35), 6908-6919.
[37]Knight, J. D., & Miranker, A. D. (2004). Phospholipid catalysis of diabetic amyloid assembly. Journal of Molecular Biology, 341(5), 1175-1187.
[38]Forloni, G., Colombo, L., Girola, L., Tagliavini, F., & Salmona, M. (2001). Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS letters, 487(3), 404-407.
[39]Westermark, P., & Wilander, E. (1978). The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia, 15(5), 417-421.
[40]Clark, A., Wells, C., Buley, I., Cruickshank, J., Vanhegan, R., Matthews, D., . . . Turner, R. (1988). Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes research (Edinburgh, Scotland), 9(4), 151-159.
[41]Palhano, F. L., Lee, J., Grimster, N. P., & Kelly, J. W. (2013). Toward the molecular mechanism (s) by which EGCG treatment remodels mature amyloid fibrils. Journal of the American Chemical Society, 135(20), 7503-7510.
[42]Cao, P., & Raleigh, D. P. (2012). Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols. Biochemistry, 51(13), 2670-2683.
[43]Meng, F., Abedini, A., Plesner, A., Verchere, C. B., & Raleigh, D. P. (2010). The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry, 49(37), 8127-8133.
[44]Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., . . . Stefani, M. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 416(6880), 507-511.
[45]Bemporad, F., & Chiti, F. (2012). Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol, 19(3), 315-327.
[46]Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A., Selkoe, D. J., & Ashe, K. H. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci, 8(1), 79-84.
[47]Winner, B., Jappelli, R., Maji, S. K., Desplats, P. A., Boyer, L., Aigner, S., . . . Riek, R. (2011). In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A, 108(10), 4194-4199.
[48]Hartl, F. U. (2017). Protein Misfolding Diseases. Annu Rev Biochem, 86, 21-26.
[49]Westermark, P., Andersson, A., & Westermark, G. T. (2011). Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev, 91(3), 795-826.
[50]Ghio, S., Camilleri, A., Caruana, M., Ruf, V. C., Schmidt, F., Leonov, A., . . . Vassallo, N. (2019). Cardiolipin Promotes Pore-Forming Activity of Alpha-Synuclein Oligomers in Mitochondrial Membranes. ACS Chem Neurosci, 10(8), 3815-3829.
[51]Angelova, P. R., Ludtmann, M. H., Horrocks, M. H., Negoda, A., Cremades, N., Klenerman, D., . . . Abramov, A. Y. (2016). Ca2+ is a key factor in α-synuclein-induced neurotoxicity. J Cell Sci, 129(9), 1792-1801.
[52]Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol, 14, 450-464.
[53]Evangelisti, E., Cascella, R., Becatti, M., Marrazza, G., Dobson, C. M., Chiti, F., . . . Cecchi, C. (2016). Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Scientific reports, 6, 32721-32721.
[54]Cecchi, C., & Stefani, M. (2013). The amyloid-cell membrane system. The interplay between the biophysical features of oligomers/fibrils and cell membrane defines amyloid toxicity. Biophysical chemistry, 182, 30-43.
[55]Lukiw, W. J. (2013). Alzheimer's disease (AD) as a disorder of the plasma membrane. Frontiers in physiology, 4, 24.
[56]Prade, E., Barucker, C., Sarkar, R., Althoff-Ospelt, G., Lopez del Amo, J. M., Hossain, S., . . . Reif, B. (2016). Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-β Peptide Which Exhibit Reduced Neurotoxicity. Biochemistry, 55(12), 1839-1849.
[57]Bieschke, J., Herbst, M., Wiglenda, T., Friedrich, R. P., Boeddrich, A., Schiele, F., . . . Wanker, E. E. (2011). Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat Chem Biol, 8(1), 93-101.
[58]Limbocker, R., Chia, S., Ruggeri, F. S., Perni, M., Cascella, R., Heller, G. T., . . . Dobson, C. M. (2019). Trodusquemine enhances Aβ(42) aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nat Commun, 10(1), 225.
[59]Pilkington, E. H., Lai, M., Ge, X., Stanley, W. J., Wang, B., Wang, M., . . . Ke, P. C. (2017). Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation. Biomacromolecules, 18(12), 4249-4260.
[60]Peptide Synthesis - Methods and Reagents. from https://www.antibodies-online.com/resources/17/5034/peptide-synthesis-methods-and-reagents/
[61]陳怡婷(2019)。人類降鈣素雙突變體提升抗纖維化能力及做為胜肽藥物之潛能。未出版之碩士論文,國立臺灣師範大學化學系,台北市。
[62]國家科學委員會. 精密儀器發展中心(1998)。儀器總覽 = Introduction to instrumentation。行政院國家科學委員會精密儀器發展中心,新竹市。
[63]吳孟鑫(2020)。(壹)探討胰島類澱粉蛋白序列位置一號離胺酸的角色(貳)探討胡椒鹼及其衍生物對胰島類澱粉蛋白聚集的影響。未出版之碩士論文,國立臺灣師範大學化學系,台北市。
[64]Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta, 1804(7), 1405-1412.
[65]Circular Dichroism Spectroscopy. from https://jascoinc.com/learning-center/theory/spectroscopy/circular-dichroism-spectroscopy/
[66]Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2013). Lehninger principles of biochemistry (6th ed.). New York: W.H. Freeman.
[67]McMahon, G. (2021 ). How a Mass Spectrometer Works, Types of Instrumentation and Interpreting Mass Spectral Data. from https://www.technologynetworks.com/analysis/articles/how-a-mass-spectrometer-works-types-of-instrumentation-and-interpreting-mass-spectral-data-347878
[68]Gross, J. H., & SpringerLink (Online service). (2017). Mass spectrometry : a textbook (Third edition. ed.). Cham: Springer International Publishing : Imprint: Springer.
[69]Clark, A. E., Kaleta, E. J., Arora, A., & Wolk, D. M. (2013). Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev, 26(3), 547-603.