簡易檢索 / 詳目顯示

研究生: 吳巧羚
Wu, Ciao-Ling
論文名稱: 順鉑導致斑馬魚胚胎離子細胞氧化壓力與細胞凋亡
Cisplatin induces oxidative stress and apoptosis in ionocytes of zebrafish embryos
指導教授: 林豊益
Lin, Li-Yih
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 順鉑腎毒性斑馬魚離子細胞粒線體損傷細胞凋亡氧化壓力抗氧化劑
英文關鍵詞: cisplatin, nephrotoxicity, zebrafish, ionocyte, mitochondria damage, apoptosis, oxidative stress, antioxidant
DOI URL: http://doi.org/10.6345/NTNU202000488
論文種類: 學術論文
相關次數: 點閱:290下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 順鉑為現今廣泛使用之化療藥物,卻伴隨腎毒性、神經毒性和耳毒性等副作用,其中主要限制施予劑量的因素為腎毒性。順鉑可經由銅離子運輸蛋白與有機陽離子運輸蛋白進入腎臟上皮細胞,造成腎小管損傷,目前哺乳動物細胞研究模式已知氧化壓力生成是順鉑造成細胞損傷的主要原因之一。斑馬魚是廣泛使用於毒理學研究與藥物測試的模式動物,其仔魚表皮分布的五型離子細胞與哺乳動物腎臟上皮細胞有許多相似之處,因直接暴露於環境,好操作且易觀察。本研究以斑馬魚仔魚表皮離子細胞作為研究順鉑腎毒性之工具,使用活體螢光染色觀察順鉑對離子細胞的影響,來證實順鉑會導致離子細胞氧化壓力生成、粒線體損傷和細胞凋亡。本實驗將斑馬魚胚胎浸泡於不同濃度的順鉑(0、50、100、300、500 或 1000 μM)進行長時間(4-100 hpf)或短時間(96-98 hpf)處理,再使用活體螢光染劑單染或共染的方式,標定斑馬魚仔魚卵黃囊上具粒線體活性離子細胞(Rhodamine 123/MitoTracker)與凋亡細胞(AcridineOrange),並探討當中活性氧化物的產生(CellROX/ MitoSOX)。斑馬魚胚胎分別在順鉑處理 96 小時及 2 小時後,Rhodamine 123 標定具粒線體活性離子細胞數目均顯著下降,且凋亡細胞數目顯著上升;斑馬魚胚胎分別在順鉑處理 96 小時及 1 小時後,產生活性氧化物的離子細胞數目或 CellROX/MitoSOX 的螢光亮度均顯著上升。此外,將斑馬魚胚胎進行抗氧化劑 NAC(0、100、300、500 或 1000 μM)與順鉑的長時間共處理,發現 NAC 能降低胚胎的死亡率,並減緩順鉑對離子細胞所導致的氧化壓力與損害。由以上結果可證實順鉑會導致離子細胞氧化壓力生成和粒線體損傷,並引起細胞凋亡,而抗氧化劑 NAC 可作為順鉑毒性的保護劑。

    Cisplatin is a widely used chemotherapeutic drug, but usually causes side-effects including nephrotoxicity, neurotoxicity and ototoxicity. Cisplatin therapy is primarily limited by severe nephrotoxicity. Cisplatin can enter the renal epithelial cells via copper transporter 1 (CTR1) and organic cation transporter 2 (OCT2), and causes renal tubular damage. It is generally accepted that cisplatin-induced oxidative stress is one of the main causes of the cytotoxicity. Zebrafish embryo is a widely used animal model for toxicology and drug testing. Mitochondia-rich ionocytes in the skin of zebrafish embryos are functionally similar to mammalian renal tubular cells, and they can be observed and examined in vivo. Using the fluorescent vital staining, this study attempted to demonstrate that cisplatin can cause oxidative stress, mitochondria damage, and apoptosis in ionocytes of zebrafish embryos. Zebrafish embryos were exposed to cisplatin (0, 50, 100, 300, 500 or 1000 μM) for 96 h (4-100 hpf) or 0.5-2 h (96-98 hpf), and then they were single- or double-stained with fluorescent dyes to reveal mitochondria activity (Rhodamine123/MitoTracker), apoptosis (Acridine Orange) and oxidative stress (CellROX/MitoSOX) in ionocytes. The results showed that both 96 h and 2 h cisplatin exposure decreased Rhodamine 123-labeled ionocytes and increased apoptotic cells in a dose-depedent manner. Oxidative stress in ionocytes was induced in both 96 h and 1 h cisplatin exposed embryos. In addition, the embryos were co-treated with cisplatin and an antioxidant, NAC (0, 100, 300, 500 or 1000 μM) for 96 h. The results showed that NAC could effectively protect embryos from cisplatin-induced oxidative stress, mitochondria damage, and decrease the mortality of embryos. In conclusion, this study demonstrated that cisplatin exposure could induce oxidative stress, mitochondria damage and apoptosis in ionocytes of zebrafish embryos, and NAC could be used to protect cisplatin-induced injury.

    摘要 1 Abstract 3 研究背景 5 順鉑(Cisplatin ; cis-Dichlorodiammine platinum(II), CDDP)5 順鉑的作用機制 5 順鉑抗氧化保護劑 7 斑馬魚模式動物 8 斑馬魚的離子細胞(Ionocyte) 8 順鉑對斑馬魚的毒性研究 9 研究目的 10 材料與方法 11 實驗動物 11 順鉑的處理 11 抗氧化劑的處理 12 斑馬魚仔魚活體螢光染色 12 具粒線體活性離子細胞的標定 13 細胞凋亡測定 13 活性氧化物測定 14 斑馬魚仔魚體內鉑含量測定 14 影像分析 15 統計分析 15 實驗設計 16 實驗 1:長時間不同濃度的順鉑處理對斑馬魚仔魚卵黃囊上離子細胞數目的影響 16 實驗 2:分析長時間不同濃度的順鉑處理所導致斑馬魚仔魚卵黃囊上的細胞凋亡 16 實驗 3:分析長時間不同濃度的順鉑處理所導致斑馬魚仔魚卵黃囊上離子細胞的氧化壓力 17 實驗 4:短時間不同濃度的順鉑處理對斑馬魚仔魚卵黃囊上離子細胞數目的影響 17 實驗 5:分析短期不同時間順鉑處理所導致斑馬魚仔魚卵黃囊上的細胞凋亡 18 實驗 6:分析短期不同時間順鉑處理所導致斑馬魚仔魚卵黃囊上離子細胞的氧化壓力 18 實驗 7:長時間不同濃度的 NAC 與不同濃度的順鉑共處理對斑馬魚仔魚存活率與孵化率的影響 19 實驗 8:長時間不同濃度的 NAC 與不同濃度的順鉑共處理對斑馬魚仔魚卵黃囊上離子細胞數目的影響 19 實驗 9:長時間NAC與不同濃度的順鉑共處理對斑馬魚仔魚卵黃囊上離子細胞產生氧化壓力的影響 20 實驗 10:長時間不同濃度的 NAC 與不同濃度的順鉑共處理對斑馬魚仔魚體內累積之鉑含量的影響 20 實驗流程 21 結果 23 實驗 1:長時間不同濃度的順鉑處理對斑馬魚仔魚卵黃囊上離子細胞數目的影響 23 實驗 2:分析長時間不同濃度的順鉑處理所導致斑馬魚仔魚卵黃囊上的細胞凋亡 23 實驗 3:分析長時間不同濃度的順鉑處理所導致斑馬魚仔魚卵黃囊上離子細胞的氧化壓力 23 實驗 4:短時間不同濃度的順鉑處理對斑馬魚仔魚卵黃囊上離子細胞數目的影響 25 實驗 5:分析短期不同時間順鉑處理所導致斑馬魚仔魚卵黃囊上的細胞凋亡 25 實驗 6:分析短期不同時間順鉑處理所導致斑馬魚仔魚卵黃囊上離子細胞的氧化壓力 25 實驗 7:長時間不同濃度的 NAC 與不同濃度的順鉑共處理對斑馬魚仔魚存活率與孵化率的影響 26 實驗 8:長時間不同濃度的 NAC 與不同濃度的順鉑共處理對斑馬魚仔魚卵黃囊上離子細胞數目的影響 27 實驗 9:長時間 NAC 與不同濃度的順鉑共處理對斑馬魚仔魚卵黃囊上離子細胞產生氧化壓力的影響 28 實驗 10:長時間不同濃度的 NAC 與不同濃度的順鉑共處理對斑馬魚仔魚體內累積之鉑含量的影響 29 討論 30 離子細胞的粒線體損傷 30 離子細胞粒線體活性與細胞凋亡的關係 31 離子細胞氧化壓力分析 32 NAC 對順鉑毒性的保護效果 33 活體染劑在斑馬魚仔魚上之應用 35 結論 38 參考文獻 39

    Akan, I., Akan, S., Akca, H., Savas, B., Ozben, T. (2005) Multidrug resistance-associated protein 1 (MRP1) mediated vincristine resistance: effects of N-acetylcysteine and buthionine sulfoximine. Cancer cell international 5(1): 22. 1-9.

    Aleksunes, L.M., Wen, X. (2012) MRP2 transporter reduces renal cisplatin accumulation and protects against nephrotoxicity. Federation of American Societies for Experimental Biology.

    Aruoma, O.I., Halliwell, B., Hoey, B.M., Butler, J. (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine 6(6): 593-597.

    Astin, J., Keerthisinghe, P., Du, L., Sanderson, L., Crosier, K., Crosier, P., Hall, C. (2017) Innate immune cells and bacterial infection in zebrafish. Methods in Cell Biology 138: 31-60.

    Baracca, A., Sgarbi, G., Solaini, G., Lenaz, G. (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1606(1-3): 137-146.

    Berk, M., Malhi, G.S., Gray, L.J., Dean, O.M. (2013) The promise of N-acetylcysteine in neuropsychiatry. Trends in Pharmacological Sciences 34(3): 167-177.

    Borst, P., Evers, R., Kool, M., Wijnholds, J. (2000) A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute 92(16): 1295-1302.

    Chazotte, B. (2011) Labeling mitochondria with MitoTracker dyes. Cold Spring Harbor Protocols 2011(8): 990-992.

    Choi, Y.M., Kim, H.K., Shim, W., Anwar, M.A., Kwon, J.W., Kwon, H.K., Kim, H.J., Jeong, H., Kim, H.M., Hwang, D. (2015) Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS generation. PloS one 10(8): e0135083. 1-21.

    Ciarimboli, G. (2014) Membrane transporters as mediators of cisplatin side-effects. Anticancer Research 34(1): 547-550.

    Cocetta, V., Ragazzi, E., Montopoli, M. (2019) Mitochondrial involvement in cisplatin resistance. International Journal of Molecular Sciences 20(14): 3384. 1-17.

    Cummings, B.S., Schnellmann, R.G. (2002) Cisplatin-Induced Renal Cell Apoptosis: Caspase 3-Dependent and -Independent Pathways. Journal of Pharmacology and Experimental Therapeutics 302(1): 8-17.

    De-Ugarte, L., Balcells, S., Nogues, X., Grinberg, D., Diez-Perez, A., Garcia-Giralt, N. (2018) Pro-osteoporotic miR-320a impairs osteoblast function and induces oxidative stress. PloS one 13(11): e0208131. 1-15.

    de Jonge, M.J., Verweij, J. (2006) Renal toxicities of chemotherapy. Seminars in oncology. Elsevier 33(1): 68-73.

    Denton, D., Xu, T., Kumar, S. (2015) Autophagy as a pro‐death pathway. Immunology and Cell Biology 93(1): 35-42.

    Dickey, D.T., Wu, Y.J., Muldoon, L.L., Neuwelt, E.A. (2005) Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels. Journal of Pharmacology and Experimental Therapeutics 314(3): 1052-1058.

    Fichi, G., Naef, V., Barca, A., Longo, G., Fronte, B., Verri, T., Santorelli, F.M., Marchese, M., Petruzzella, V. (2019) Fishing in the cell powerhouse: zebrafish as a tool for exploration of mitochondrial defects affecting the nervous system. International Journal of Molecular Sciences 20(10): 2409. 1-24.

    Gu, G., Na, Y., Chung, H., Seok, S.H., Lee, H.Y. (2017) Zebrafish larvae model of dilated cardiomyopathy induced by terfenadine. Korean Circulation Journal 47(6): 960-969.

    Guh, Y.J., Lin, C.H., Hwang, P.P. (2015) Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI Journal 14: 627-659.

    Gumulec, J., Balvan, J., Sztalmachova, M., Raudenska, M., Dvorakova, V., Knopfova, L., Polanska, H., Hudcova, K., Ruttkay-Nedecky, B., Babula, P., Adam, V., Kizek, R., Stiborova, M., Masarik, M. (2013) Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle. International Journal of Oncology 44(3): 923-33.

    Guo, P., Huang, Z., Tao, T., Chen, X., Zhang, W., Zhang, Y., Lin, C. (2015) Zebrafish as a model for studying the developmental neurotoxicity of propofol. Journal of Applied Toxicology 35(12): 1511-1519.

    Hall, C.J., Boyle, R.H., Astin, J.W., Flores, M.V., Oehlers, S.H., Sanderson, L.E., Ellett, F., Lieschke, G.J., Crosier, K.E., Crosier, P.S. (2013) Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production. Cell Metabolism 18(2): 265-278.

    Harishkumar, R., Manjari, M.S., Rose, C., Selvaraj, C.I. (2019) Protective effect of Nelumbo nucifera (Gaertn.) against H2O2-induced oxidative stress on H9c2 cardiomyocytes. Molecular Biology Reports: 1-12.

    Henson, H.E., Parupalli, C., Ju, B., Taylor, M.R. (2014) Functional and genetic analysis of choroid plexus development in zebrafish. Frontiers in Neuroscience 8: 364. 1-19.

    Hentschel, D.M., Park, K.M., Cilenti, L., Zervos, A.S., Drummond, I., Bonventre, J.V. (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. American Journal of Physiology-Renal Physiology 288(5): F923-F929.

    Hirama, M., Isonishi, S., Yasuda, M., Ishikawa, H. (2006) Characterization of mitochondria in cisplatin-resistant human ovarian carcinoma cells. Oncology Reports 16(5): 997-1002.

    Horng, J.L., Lin, L.Y., Huang, C.J., Katoh, F., Kaneko, T., Hwang, P.P. (2007) Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292(5): R2068-R2076.

    Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446): 498-503.

    Hung, G.Y., Wu, C.L., Chou, Y.L., Chien, C.T., Horng, J.L., Lin, L.Y. (2019) Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos. Aquatic Toxicology 209: 168-177.

    Hwang, P.P., Chou, M.Y. (2013) Zebrafish as an animal model to study ion homeostasis. Pflügers Archiv-European Journal of Physiology 465(9): 1233-1247.

    Hwang, P.P., Lee, T.H., Lin, L.Y. (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 301(1): R28-R47.

    Hwang, P.P., Lin, L.Y. (2013) Gill ionic transport, acid-base regulation, and nitrogen excretion. The Physiology of Fishes 4: 205-233.

    Im, A., Kim, Y.H., Uddin, M., Lee, H.W., Chae, S.W., Kim, Y.H., Jung, W.S., Kang, B.J., Mun, C.S., Lee, M.Y. (2012) Scutellaria baicalensis extracts and flavonoids protect rat L6 cells from antimycin A-induced mitochondrial dysfunction. Evidence-Based Complementary and Alternative Medicine 2012: 517965. 1-6.

    Jakob, S., Arnold, W., Marti, H.P. (1996) Progressive renal failure after cisplatin therapy. Nephrology, Dialysis, Transplantation 11(2): 370-373.

    Jamieson, E.R., Lippard, S.J. (1999) Structure, recognition, and processing of cisplatin− DNA adducts. Chemical Reviews 99(9): 2467-2498.

    Jones, D.P., Spunt, S.L., Green, D., Springate, J.E. (2008) Renal late effects in patients treated for cancer in childhood: a report from the Children's Oncology Group. Pediatric Blood & Cancer 51(6): 724-731.

    Kaneko, T., Shiraishi, K., Katoh, F., Hasegawa, S., Hiroi, J. (2002) Chloride cells during early life stages of fish and their functional differentiation. Fisheries Science 68(1): 1-9.

    Khynriam, D., Prasad, S. (2002) Changes in glutathione-related enzymes in tumor-bearing mice after cisplatin treatment. Cell Biology and Toxicology 18(6): 349-358.

    Kong, E., Yeung, W., Chan, T., Cheng, S., Yu, K. (2016) Exogenous nitric oxide suppresses in vivo X-ray-induced targeted and non-targeted effects in zebrafish embryos. International Journal of Molecular Sciences 17(8): 1321. 1-12.

    Kwong, R.W., Perry, S.F. (2016) A role for sodium-chloride cotransporters in the rapid regulation of ion uptake following acute environmental acidosis: new insights from the zebrafish model. American Journal of Physiology-Cell Physiology 311(6): C931-C941.

    Lin, L.Y., Horng, J.L., Kunkel, J.G., Hwang, P.P. (2006) Proton pump-rich cell secretes acid in skin of zebrafish larvae. American Journal of Physiology-Cell Physiology 290(2): C371-C378.

    Lin, L.Y., Hwang, P.P. (2001) Modification of morphology and function of integument mitochondria-rich cells in tilapia larvae (Oreochromis mossambicus) acclimated to ambient chloride levels. Physiological and Biochemical Zoology 74(4): 469-476.

    Lin, L.Y., Hwang, P.P. (2004) Mitochondria-rich cell activity in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae acclimatized to different ambient chloride levels. Journal of Experimental Biology 207(8): 1335-1344.

    Luckenbach, T., Fischer, S., Sturm, A. (2014) Current advances on ABC drug transporters in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 165: 28-52.

    MacRae, C.A., Peterson, R.T. (2015) Zebrafish as tools for drug discovery. Nature reviews Drug discovery 14(10): 721-731.

    Manohar, S., Leung, N. (2018) Cisplatin nephrotoxicity: a review of the literature. Journal of Nephrology 31(1): 15-25.

    Mapuskar, K.A., Wen, H., Holanda, D.G., Rastogi, P., Steinbach, E., Han, R., Coleman, M.C., Attanasio, M., Riley, D.P., Spitz, D.R. (2019) Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biology 20: 98-106.

    Marullo, R., Werner, E., Degtyareva, N., Moore, B., Altavilla, G., Ramalingam, S.S., Doetsch, P.W. (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PloS one 8(11): e81162. 1-15.

    Mathuram, T.L., Ravikumar, V., Reece, L.M., Karthik, S., Sasikumar, C.S., Cherian, K.M. (2016) Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation. Environmental toxicology and pharmacology 46: 194-205.

    Miller, R.P., Tadagavadi, R.K., Ramesh, G., Reeves, W.B. (2010) Mechanisms of cisplatin nephrotoxicity. Toxins 2(11): 2490-2518.

    Mittal, S., Pandey, A.K. (2014) Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed Research International 2014: 1-14.

    Monaco, A., Capriello, T., Grimaldi, M.C., Schiano, V., Ferrandino, I. (2017) Neurodegeneration in zebrafish embryos and adults after cadmium exposure. European Journal of Histochemistry: EJH 61(4): 276-279.

    Mugoni, V., Camporeale, A., Santoro, M.M. (2014) Analysis of oxidative stress in zebrafish embryos. JoVE (Journal of Visualized Experiments) (89): e51328. 1-11.

    Nakkala, J.R., Mata, R., Raja, K., Chandra, V.K., Sadras, S.R. (2018) Green synthesized silver nanoparticles: Catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Materials Science and Engineering: C 91: 372-381.

    Nisar, S., Feinfeld, D.A. (2002) N-acetylcysteine as salvage therapy in cisplatin nephrotoxicity. Renal Failure 24(4): 529-533.

    Pabla, N., Dong, Z. (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney International 73(9): 994-1007.

    Pajaniradje, S., Mohankumar, K., Pamidimukkala, R., Subramanian, S., Rajagopalan, R. (2014) Antiproliferative and apoptotic effects of Sesbania grandiflora leaves in human cancer cells. BioMed Research International 2014: 1-11.

    Paquet, D., Plucińska, G., Misgeld, T. (2014) In vivo imaging of mitochondria in intact zebrafish larvae. Methods in Enzymology 547: 151-164.

    Pendergrass, W., Wolf, N., Poot, M. (2004) Efficacy of MitoTracker Green™ and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry Part A: the Journal of the International Society for Analytical Cytology 61(2): 162-169.

    Perry, S., Goss, G., Laurent, P. (1992) The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Canadian Journal of Zoology 70(9): 1775-1786.

    Pullan, J.E., Confeld, M.I., Osborn, J.K., Kim, J., Sarkar, K., Mallik, S. (2019) Exosomes as drug carriers for cancer therapy. Molecular Pharmaceutics 16(5): 1789-1798.

    Rosell, R., Taron, M., Barnadas, A., Scagliotti, G., Sarries, C., Roig, B. (2003) Nucleotide excision repair pathways involved in cisplatin resistance in non-small-cell lung cancer. Cancer Control 10(4): 297-305.

    Rosenberg, B., Van Camp, L., Krigas, T. (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205(4972): 698-699.

    Rosenberg, B., Vancamp, L., Trosko, J.E., Mansour, V.H. (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222(5191): 385-386.

    Ruggiero, A., Rizzo, D., Trombatore, G., Maurizi, P., Riccardi, R. (2016) The ability of mannitol to decrease cisplatin-induced nephrotoxicity in children: real or not? Cancer Chemotherapy and Pharmacology 77(1): 19-26.

    Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., Stiborova, M., Adam, V., Kizek, R. (2013) The role of metallothionein in oxidative stress. International Journal of Molecular Sciences 14(3): 6044-6066.

    Samuni, Y., Goldstein, S., Dean, O.M., Berk, M. (2013) The chemistry and biological activities of N-acetylcysteine. Biochimica et Biophysica Acta (BBA)-General Subjects 1830(8): 4117-4129.

    Santoso, J.T., Lucci, J.A., Coleman, R.L., Schafer, I., Hannigan, E.V. (2003) Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemotherapy and Pharmacology 52(1): 13-18.

    Santus, P., Corsico, A., Solidoro, P., Braido, F., Di Marco, F., Scichilone, N. (2014) Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD: Journal of Chronic Obstructive Pulmonary Disease 11(6): 705-717.

    Sodani, K., Patel, A., Kathawala, R.J., Chen, Z.-S. (2012) Multidrug resistance associated proteins in multidrug resistance. Chinese Journal of Cancer 31(2): 58-72.

    Sprowl, J., Gregorc, V., Lazzari, C., Mathijssen, R., Loos, W., Sparreboom, A. (2012) Associations between ABCC2 polymorphisms and cisplatin disposition and efficacy. Clinical Pharmacology & Therapeutics 91(6): 1022-1026.

    Tsirigotakis, N., Christodoulou, V., Ntais, P., Mazeris, A., Koutala, E., Messaritakis, I., Antoniou, M. (2016) Geographical distribution of MDR1 expression in Leishmania isolates, from Greece and Cyprus, measured by the rhodamine-123 efflux potential of the isolates, using flow cytometry. The American Journal of Tropical Medicine and Hygiene 94(5): 987-992.

    Vega-Rodríguez, J., Franke-Fayard, B., Dinglasan, R.R., Janse, C.J., Pastrana-Mena, R., Waters, A.P., Coppens, I., Rodríguez-Orengo, J.F., Jacobs-Lorena, M., Serrano, A.E. (2009) The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission. PLoS Pathogens 5(2): e1000302. 1-12.

    Wisnovsky, S.P., Wilson, J.J., Radford, R.J., Pereira, M.P., Chan, M.R., Laposa, R.R., Lippard, S.J., Kelley, S.O. (2013) Targeting mitochondrial DNA with a platinum-based anticancer agent. Chemistry & Biology 20(11): 1323-1328.

    Yao, X., Panichpisal, K., Kurtzman, N., Nugent, K. (2007) Cisplatin nephrotoxicity: a review. The American Journal of the Medical Sciences 334(2): 115-124.

    Yasuyuki, S., Takahiro, S., Yoshio, T. (1992) Mechanism of the increase in lipid peroxide induced by cisplatin in the kidneys of rats. Toxicology Letters 62(2-3): 293-300.

    Zeng, C., Sun, H., Xie, P., Wang, J., Zhang, G., Chen, N., Yan, W., Li, G. (2014) The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos. Aquatic Toxicology 149: 25-32.

    Zeviani, M., Di Donato, S. (2004) Mitochondrial disorders. Brain 127(10): 2153-2172.

    Zhang, B., Ramesh, G., Norbury, C., Reeves, W.B. (2007) Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney International 72(1): 37-44.

    Zhang, X., Huang, Z., Hou, T., Xu, J., Wang, Y., Shang, W., Ye, T., Cheng, H., Gao, F., Wang, X. (2013) Superoxide constitutes a major signal of mitochondrial superoxide flash. Life Sciences 93(4): 178-186

    無法下載圖示 本全文未授權公開
    QR CODE