研究生: |
顧栢榕 Ku, Po-Jung |
---|---|
論文名稱: |
台北市四種行道樹對大氣沉降物的截留比較 A comparative study on interception of atmospheric deposition among four side-walk tree species in Taipei |
指導教授: |
林登秋
Lin, Teng-Chiu |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 空氣汙染 、穿落水 、行道樹 、懸浮微粒 、重金屬 |
英文關鍵詞: | air pollution, throughfall, sidewalk tree, particulate matter, heavy metal |
DOI URL: | https://doi.org/10.6345/NTNU202203447 |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
空氣汙染是日趨嚴重的環境議題,特別是在人口稠密的都市地區,植物透過冠層截留能有效的過濾空氣中的汙染物。本研究藉由收集穿落水及雨水比較榕樹(Ficus microcarpa L.f)、茄苳(Bischofia javanica)、樟樹(Cinnamomum camphora)、台灣欒樹(Koelreuteria elegans)四種台灣常見行道樹對大氣沉降物的截留情形。四個樹種中以榕樹冠層截留的懸浮微粒量最高(667 mg/m^2),而單位葉面積截留懸浮微粒的能力在四種樹間並無顯著差異。穿落水量與冠層洗出的懸浮微粒重量呈現顯著正相關,且降雨強度大時所洗下的懸浮微粒重量也較高;將葉片採回洗滌的實驗中,樟樹葉片洗出最多的懸浮微粒(423 mg/m^2),與實際受雨水淋洗的結果不同,其差異應是受洗滌力道所影響;主要陰陽離子的淨變化量也以榕樹較高;懸浮微粒中所含金屬(銅、鉻、鉛、鋁)則是在樹種間沒有顯著差異,並與降雨量、乾沉降累積天數、平均細懸浮微粒濃度的相關性皆非常低,其中鉛在四個樹種穿落水中的含量皆小於雨水,表示冠層對鉛有淨留置的作用。
Air pollution is an important environmental issue, especially in heavily populated cities. Tree canopies could effectively filter polluted air through intercepting pollutants. This study compared the interception of atmospheric deposition among four common sidewalk tree species in Taiwan, Ficus microcarpa L.f, Bischofia javanica, Cinnamomum camphora, and Koelreuteria elegans, through collection and analysis of throughfall and rainfall. The canopy of F. microcarpa intercepted the largest amount of suspended particles (667 mg/m^2). However, on a per unit leaf area basis, the efficiency of interception of suspended particles (PM10) was not different among the four species. The amount of PM10 washed off tree canopies positively correlated with throughfall quantity and rainfall intensity. Unlike the result from the wash of rainfall, the amount of suspended particles was highest from leaves of C. camphora’s (423 mg/m^2) in the hand-wash experiment, possibly due to the differences in thoroughness of wash between rainfall and hand-wash. The differences in the content between rainfall and throughfall was higher for F. microcarpa than other species but such differences were not found for metals, Cu, Cr, Pb, and Al. There were no significant differences in net change of metal content between rainfall and throughfall among the four species. Moreover, the changes were either weakly or not significantly related to rainfall intensity, dry period before rainfall, or concentration of particulate matter smaller than 2.5 μm (PM2.5). Unexpectedly, the concentration of Pb is lower in throughfall than in precipitation indicating that tree canopies are a sink of Pb.
台北市交通工路管制處,2014,交通流量調查資料
http://www.bote.gov.taipei/ct.asp?xItem=660485&CtNode=20205&mp=117031
行政院環保署,2015,細懸浮微粒管制
http://air.epa.gov.tw/Public/suspended_particles.aspx
金恒鑣、劉瓊霦、夏禹九、黃正良,2003,福山天然闊葉林生態系對降水水化學的交互作用。台灣林業科學,13:363-373
柴一新、祝寧、韓煥金,2002,城市綠化樹種的滯塵效應-以哈爾濱市為例。應用生態學報,13:1121-1126
陳千佩,2015,臺灣中部平地造林對大氣汙染物截留之研究。碩士論文,國立中興大學森林學系研究所
陳晶晶、凌德麟,1999,臺北市行道樹颱風災害調查與抗風性之探討-以賀伯、安珀、瑞伯颱風為例。中國園藝,46:427-442
黃曉菊,2003,行道樹根系對人行道硬體破壞之研究-以高雄市10種行道樹為例。碩士論文,私立東海大學景觀學系研究所
Abbey, D. E., Burchette, R. J., Knutsen, S. F., Lawrence Beeson, W., McDonnell, W. F., Nishino, N., & Yang, J. X. (1999). Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. American Journal of Respiratory and Critical Care Medicine, 159, 373-82.
Alvey, A. A. (2006). Promoting and preserving biodiversity in the urban forest. Urban Forestry & Urban Greening, 5, 195-201.
APHA. (1998) Standard Methods for the Examination of Water and Wastewater,20th ed., Method 2320 B, pp. 2- 26-2- 29. American Public Health Association: Washington, D.C.,USA.
Barber, J. L., Thomas, G. O., Kerstiens, G., & Jones, K. C. (2002). Air-side and plant-side resistances influence the uptake of airborne PCBs by evergreen plants. Environmental Science & Technology, 36, 3224-3229.
Beckett, K. P., Freer Smith, P. H., & Taylor, G. (2000). Effective tree species for local air quality management. Journal of Arboriculture, 26, 12-19.
Bernatzky, A. (1983). The effects of trees on the urban climate. In: Trees in the 21st Century. Academic Publishers, Berkhamster, 59-76. Based on the first International Arbocultural Conference.
Bolund, P., & Hunhammer, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29, 293-301.
Boufford, D.E., Ohashi, H., Huang, T.C., Hsien, C.F., Tsai, J.L., Yang, K.C., Peng, C.I., Kuoh, C.S., & Hsiao. H. (2003). A checklist of the vascular plants of Taiwan. In: Huang, T.C. et al. (eds), Flora of Taiwan, 2nd. ed. 6: 15-139. Department of Botany,National Taiwan University, Taipei, TW.
Buhaug, H., & Urdal, H. (2013). An urbanization bomb? Population growth and social disorder in cities. Global Environmental Change, 23, 1-10.
Chakre, O. J. (2006). Choice of eco-friendly trees in urban environment to mitigate airborne particulate pollution. Journal of Human Ecology, 20, 135-138.
Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope C. A., Romieu, I., Samet, J. M., & Smith, K. R. (2004). Urban air pollution. Comparative Quantification of Health Risks, 2, 1353-1433.
Dochinger, L. S. (1980). Interception of airborne particles by tree plantings. Journal of Environmental Quality, 9, 265-268.
Dwyer, J. F., McPherson, E. G., Schroeder, H. W., & Rowntree, R. A. (1992). Assessing the benefits and costs of the urban forest. Journal of Arboriculture, 18, 227-227.
Edwards, P. J. (1982). Studies of mineral cycling in a montane rain forest in New Guinea: V. Rates of cycling in throughfall and litter fall. The Journal of Ecology, 807-827.
Freer-Smith, P. H., El-Khatib, A. A., & Taylor, G. (2004). Capture of Particulate Pollution by Trees: A Comparison of Species Typical of Semi-Arid Areas (Ficus Nitida and Eucalyptus Globulus) with European and North American Species. Water, Air, and Soil Pollution, 155, 173-187.
Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313-324.
Gandois, L., Tipping, E., Dumat, C., & Probst, A. (2010). Canopy influence on trace metal atmospheric inputs on forest ecosystems: speciation in throughfall. Atmospheric Environment, 44, 824-833.
Givoni, B. (1991). Impact of planted areas on urban environmental quality: a review. Atmospheric Environment, 25, 289–299.
He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., Cadle, S., Chan, T., & Mulawa, P. (2001). The characteristics of PM 2.5 in Beijing, China. Atmospheric Environment, 35, 4959-4970.
Henderson, G. S., Harris, W. F., Todd Jr, D. E., & Grizzard, T. (1977). Quantity and chemistry of throughfall as influenced by forest-type and season. The Journal of Ecology, 65, 365-374.
Huang, Y. C. T., & Ghio, A. J. (2006). Vascular effects of ambient pollutant particles and metals. Current Vascular Pharmacology, 4, 199-203.
Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167-182.
Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362-367.
Kober, B., Wessels, M., Bollhöfer, A., & Mangini, A. (1999). Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere. Geochimica et Cosmochimica Acta, 63, 1293-1303.
Kulshrestha, U. C., Kulshrestha, M. J., Sekar, R., Sastry, G. S. R., & Vairamani, M. (2003). Chemical characteristics of rainwater at an urban site of south-central India. Atmospheric Environment, 37, 3019-3026.
Liang, W. M., Wei, H. Y., & Kuo, H. W. (2009). Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environmental research, 109, 51-58.
Lin, C. Y., Liu, S. C., Chou, C. C. K., Huang, S. J., Liu, C. M., Kuo, C. H., & Young, C. Y. (2005). Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment, 39, 6066-6076.
Lin, T. C., Hamburg, S. P., King, H. B., & Hsia, Y. J. (2000). Throughfall patterns in a subtropical rain forest of northeastern Taiwan. Journal of Environmental Quality, 29, 1186-1193.
Lin, T. C., Hamburg, S. P., Hsia, Y. J., King, H. B., Wang, L. J., & Lin, K. C. (2001). Base cation leaching from the canopy of a subtropical rainforest in northeastern Taiwan. Canadian Journal of Forest Research, 31, 1156-1163.
Liu, C. P., & Sheu, B. H. (1999). Distribution and chemical characteristics of nutrients in throughfall and stemflow of three different stands. Quarterly Journal of Forest Research, 21, 51-59.
Liu, L., Guan, D., Peart, M. R., Wang, G., Zhang, H., & Li, Z. (2013). The dust retention capacities of urban vegetation—a case study of Guangzhou, South China. Environmental Science and Pollution Research, 20, 6601-6610.
Lohr, V. I., Pearson-Mims, C. H., Tarnai, J., & Dillman, D. A. (2004). How urban residents rate and rank the benefits and problems associated with trees in cities. Journal of Arboriculture, 30, 28-35.
Maco, S. E., & McPherson, E. G. (2003). A practical approach to assessing structure, function, and value of street tree populations in small communities. Journal of Arboriculture, 29, 84-97.
Maher, B. A., Moore, C., & Matzka, J. (2008). Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmospheric Environment, 42, 364-373.
McPherson, E. G., Nowak, D., Heisler, G., Grimmond, S., Souch, C., Grant, R., & Rowntree, R. (1997). Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project. Urban Ecosystems, 1, 49-61.
McPherson, E. G. (2003). A benefit-cost analysis of ten street tree species in Modesto, California, US. Journal of Arboriculture, 29, 1-8.
Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M., & Yasutake, A. (2000). Removal of SOx and NOx over activated carbon fibers. Carbon, 38, 227-239.
Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4, 115-123.
Ottelé, M., van Bohemen, H. D., & Fraaij, A. L. (2010). Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecological Engineering, 36, 154-162.
Parkhurst, D. F., & Loucks, O. L. (1972). Optimal leaf size in relation to environment. The Journal of Ecology, 60, 505-537.
Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109, 71-77.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C. R., Cots, N., Massagué, G., & Puig, O. (2001). PM10 and PM2. 5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment, 35, 6407-6419.
Räsänen, J. V., Holopainen, T., Joutsensaari, J., Ndam, C., Pasanen, P., Rinnan, Å., & Kivimäenpää, M. (2013). Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees. Environmental Pollution, 183, 64-70.
Robinson, E., & Robbins, R. C. (1970). Gaseous sulfur pollutants from urban and natural sources. Journal of the Air Pollution Control Association, 20, 233-235.
Rodrigo, A., Avila, A., & Gomez-Bolea, A. (1999). Trace metal contents in Parmelia caperata (L.) Ach. compared to bulk deposition, throughfall and leaf-wash fluxes in two holm oak forests in Montseny (NE Spain). Atmospheric Environment, 33, 359-367.
Seaton, A., Godden, D., MacNee, W., & Donaldson, K. (1995). Particulate air pollution and acute health effects. The Lancet, 345, 176-178.
Simpson, J. R. (1998). Urban forest impacts on regional cooling and heating energy use: Sacramento County case study. Journal of Arboriculture, 24, 201-214.
Sternberg, T., Viles, H., Cathersides, A., & Edwards, M. (2010). Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Science of the Total Environment, 409, 162-168.
Tong, S. T., & Farrell, P. M. (1991). The concentration profile of heavy metals in an urban forest. Environmental Technology, 12, 79-85.
Tukey Jr, H. B. (1970). The leaching of substances from plants. Annual Review of Plant Physiology, 21, 305-324.
Wang, H. X., Shi, H., & Wang, Y. H. (2015). Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions. Acta Ecologica Sinica, 35, 1696-1705.
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Ssensing of Environment, 89, 467-483.
Xiao, Q., McPherson, E. G., Ustin, S. L., & Grismer, M. E. (2000). A new approach to modeling tree rainfall interception. Journal of Geophysical Research, 105, 29-173.
Yang, J., McBride, J., Sun, Z., & Zhou, J. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3, 65-78.
Zhang, M., Wang, S., Wu, F., Yuan, X., & Zhang, Y. (2007). Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmospheric Research, 84, 311-322.
Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y., & Cass, G. R. (2005). Seasonal trends in PM2. 5 source contributions in Beijing, China. Atmospheric Environment, 39, 3967-3976.
Zöttl, H. W. (1985). Heavy metal levels and cycling in forest ecosystems. Cellular and Molecular Life Sciences, 41, 1104-1113.