研究生: |
陳佳驊 Chen, Chia-Hua |
---|---|
論文名稱: |
動作距離與準確度對加減速軌跡影響 The influence of movement distance and accuracy on acceleration and deceleration trajectories |
指導教授: |
劉有德
Liu, Yeou-Teh |
口試委員: |
劉有德
Liu, Yeou-Teh 陳秀惠 Chen, Hsiu-Hui 謝宗諭 Hsieh, Tsung-Yu |
口試日期: | 2024/06/03 |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 費茲定律 、速度與準確度消長 、衝量變異 、動作控制 |
英文關鍵詞: | Fitts’ law, speed and accuracy trade-off, impulse variability, motor control |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401246 |
論文種類: | 學術論文 |
相關次數: | 點閱:77 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在費茲定律的典範下,動作距離與目標準確的容忍度被視為是影響動作時間的主要因素;衝量變異模型則直接探討更大的施力造成速度提升而增加終點變異。對稱性衝量變異模式預測間斷性快速瞄準動作有對稱之加、減速衝量,但當目標準確要求提高時,減速的時間比例會增加。本研究以14種不同動作距離與目標大小的組合建構四個費茲難度指數,以完整觀察動作距離與目標大小對加、減速度軌跡比例的影響。方法:參與者為20名右手為慣用手的健康成年人,利用手寫顯示板及壓力感應筆進行費茲工作,完成操弄動作距離及目標寬度的14個情境,每個情境各 20 次成功試作。以二因子重複量數變異數分析檢驗操弄間及難度指數對動作時間、速度峰值、加速度時間比例、加速度距離比例、加、減速度時間、加、減速度距離的影響。另以單一樣本t檢定檢驗速度峰值時間及距離比例與0.5的差異。結果:動作時間隨著難度指數增加而增加;目標寬度減小速度峰值下降,且加速度時間比例增加及加速度距離比例降低;動作距離增加速度峰值增加,且加速度時間比例及加速度距離比例不變。結論:操弄目標寬度或動作距離均可提升難度指數及增加動作時間,但兩者對加速度時間及距離比例有不同的影響。
Under the paradigm of Fitts’ law, the distance of movement and the tolerance of target accuracy are considered the main factors affecting movement time. However, the focus on the increased force that leads to an increased velocity, resulting in greater endpoint variability, was not proposed until the development of the impulse variability model. The symmetrical impulse variability model predicts that the discrete rapid aiming movements have symmetrical acceleration and deceleration impulses, and when the target accuracy requirements increase, the proportion of deceleration time will increase. This study manipulated 14 combinations of different movement distances and target sizes to construct four indices of difficulties to fully observe the effect of distance and target size on the proportion of acceleration and deceleration trajectory. Methods: Twenty right-handed healthy adults performed the Fitts’ tasks, completing 14 conditions that manipulated movement distance and target width, with each condition being tested for 20 successful trials. The two-factor repeated measures ANOVA was used to examine the effects of manipulation and the ID on the movement times, peak velocities, acceleration time rates, acceleration distance rates, acceleration/deceleration times, and acceleration/deceleration distances. Additionally, a one-sample t-test was used to compare the time/location of the peak velocity to the time/distance traveled with 0.5. Results: The movement times increased with the IDs; the peak velocity decreased with decreasing target width, but the acceleration time rates increased, and acceleration distance rates decreased. The peak velocity increased over the increasing distances, but the acceleration time and distance rates remained unchanged. Conclusion: Manipulating target width or movement distance may increase the index of difficulty and movement time, but they have different effects on the rates of acceleration time and distance of the discrete aiming movement.
謝宗諭、卓佩佩、劉有德。(2019)。 再探費茲定律: 工作限制與視覺操弄對動作表現的影響. 臺灣運動心理學報, 19(2), 75-94. https://doi.org/10.6497/BSEPT.201911_19(2).0005
謝宗諭、吳華偉、劉有德。(2022)。時-空間工作限制與費茲定律. 臺灣運動心理學報, 22(1), 39-58. https://doi.org/10.6497/BSEPT.202203_22(1).0003
陳佳驊、劉有德。(2022)。費茲定律是否反應速度與準確度的消長?。邱逸翔、吳修廷 (主持),運動心理學在後疫情時代之角色。臺灣運動心理學會年會暨學術研討會,國立臺灣師範大學。
Chen, C. H. & Liu, Y. T (2023. July. 05) Exploring The Differential Effect of Movement Distance and Target Width on Average Movement Velocity [Poster] The 2023 28th annual congress of the European College of Sport Science, France, Paris.
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology, 47(6), 381. https://doi.org/10.1037/h0055392
Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. Journal of experimental psychology, 67(2), 103. https://doi.org/10.1037/h0045689
Gan, K. C., & Hoffmann, E. R. (1988). Geometrical conditions for ballistic and visually controlled movements. Ergonomics, 31(5), 829-839. https://doi.org/10.1080/00140138808966724
Guiard, Y., Olafsdottir, H. B., & Perrault, S. T. (2011). Fitt's law as an explicit time/error trade-off. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1619-1628). https://doi.org/10.1145/1978942.1979179
Heath, M., Weiler, J., Marriott, K. A., Elliott, D., & Binsted, G. (2011). Revisiting Fitts and Peterson (1964): Width and amplitude manipulations to the reaching environment elicit dissociable movement times. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 65(4), 259. https://doi.org/10.1037/a0023618
Huys, R., Fernandez, L., Bootsma, R. J., & Jirsa, V. K. (2010). Fitts' law is not continuous in reciprocal aiming. Proceedings of the Royal Society B: Biological Sciences, 277(1685), 1179-1184. https://doi.org/10.1098/rspb.2009.1954
Huys, R., Knol, H., Sleimen-Malkoun, R., Temprado, J. J., & Jirsa, V. K. (2015). Does changing Fitts’ index of difficulty evoke transitions in movement dynamics?. EPJ Nonlinear Biomedical Physics, 3, 1-15. https:/doi.org/10.1140/epjnbp/s40366-015-0022-4
Hoffmann, E. R. (2016). Critical index of difficulty for different body motions: A review. Journal of motor behavior, 48(3), 277-288. https://doi.org/10.1080/00222895.2015.1090389
Hoffmann, E. R. (2017). Amplitude and Width Manipulations in Fitts' Paradigm: Comment on Heath et al.(2011) and Heath et al.(2016). Journal of Motor Behavior, 49(6), 686-693. https://doi.org/10.1080/00222895.2016.1250721
Keele, S. W., & Posner, M. I. (1968). Processing of visual feedback in rapid movements. Journal of experimental psychology, 77(1), 155. https://doi.org/10.1037/h0025754
Langolf, G. D., Chaffin, D. B., & Foulke, J. A. (1976). An investigation of Fitts’ law using a wide range of movement amplitudes. Journal of Motor Behavior, 8(2), 113-128. https://doi.org/10.1080/00222895.1976.10735061
Linthorne, N. P., Baker, C., Douglas, M. M., Hill, G. A., & Webster, R. G. (2011). Take-off forces and impulses in the long jump. In ISBS-Conference Proceedings Archive.
Meyer, D. E., Smith, J. E., & Wright, C. E. (1982). Models for the speed and accuracy of aimed movements. Psychological review, 89(5), 449. https://doi.org/10.1037/0033-295X.89.5.449
MacKenzie, C. L., Marteniuk, R. G., Dugas, C., Liske, D., & Eickmeier, B. (1987). Three-dimensional movement trajectories in Fitts' task: Implications for control. The Quarterly Journal of Experimental Psychology, 39(4), 629-647. https://doi.org/10.1080/14640748708401806
Newell, K. M. (1980). The Speed-Accuracy Paradox in Movement Control: Errors of Time and space. In Advances in Psychology (Vol. 1, pp. 501-510). North-Holland. https://doi.org/10.1016/S0166-4115(08)61965-2
Okazaki, V. H. A., & Rodacki, A. L. F. (2012). Increased distance of shooting on basketball jump shot. Journal of sports science & medicine, 11(2), 231.
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press.
Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn Jr, J. T. (1979). Motor-output variability: a theory for the accuracy of rapid motor acts. Psychological review, 86(5), 415. https://doi.org/10.1037/0033-295X.86.5.415
Sleimen-Malkoun, R., Temprado, J. J., Huys, R., Jirsa, V., & Berton, E. (2012). Is Fitts’ law continuous in discrete aiming?. PLoS One, 7(7), e41190. https://doi.org/10.1371/journal.pone.0041190
Sleimen-Malkoun, R., Temprado, J. J., & Berton, E. (2013). Age-related changes of movement patterns in discrete Fitts’ task. BMC neuroscience, 14, 1-11. https://doi.org/10.1186/1471-2202-14-145
Van Den Tillaar, R., & Ulvik, A. (2014). Influence of instruction on velocity and accuracy in soccer kicking of experienced soccer players. Journal of motor behavior, 46(5), 287-291. http://doi.org/10.1080/00222895.2016.1219311
Welford, A. T. (1968). Fundamentals of skill. Methuen
Woodworth, R. S. (1899). Accuracy of voluntary movement. The Psychological Review: Monograph Supplements, 3(3).
Wallace, S. A., & Newell, K. M. (1983). Visual control of discrete aiming movements. The Quarterly Journal of Experimental Psychology Section A, 35(2), 311-321. https://doi.org/10.1080/14640748308402136