研究生: |
梁晏瑜 Liang, Yen-Yu |
---|---|
論文名稱: |
大尺度環流對西北太平洋副熱帶高壓之貢獻度 Contributions of large-scale circulations to the Western North Pacific Subtropical High |
指導教授: |
王嘉琪
Wang, Chia-Chi 黃婉如 Huang, Wan-Ru |
口試委員: |
洪志誠
Hong, Chi-Cherng 涂建翊 TU, Jien-Yi 陳正達 Chen, Cheng-Ta 黃婉如 Huang, Wan-Ru 王嘉琪 Wang, Chia-Chi |
口試日期: | 2021/10/08 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 西北太平洋副熱帶高壓 、大尺度環流 、哈德里胞 、沃克環流 、季風 |
研究方法: | 資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202101537 |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西北太平洋副熱帶高壓(以下簡稱副高)的強度及範圍影響東亞地區的天氣現象,如:春末夏初的副高西北側牽制著梅雨鋒面的位置並影響水氣傳送,夏季時的熱帶氣旋沿著副高邊緣前進。若能掌握好副高的變異性及先驅指標,就能對季節性預報有較直接的幫助。大尺度環流為影響副高強度的因素之一,可分成哈德里胞環流、沃克環流及季風環流三部分,本研究分析多組再分析資料討論各環流分量對副高強度的影響,同時利用CMIP6氣候模式檢驗在全球暖化下各環流的強度及趨勢變化。本研究使用200hPa速度位來量化環流。首先將速度位的緯向平均定義為哈德里胞環流,剩餘的偏差場再分為年平均值和季節週期,分別代表沃克環流及季風環流。研究中分為兩部分,第一部分分離熱帶大尺度環流—哈德里胞環流、沃克環流及季風環流,取該環流之速度位峰值得出時間序列後,比較各環流的年際變化及長期趨勢。第二部分將各環流之時間序列移除平均場後定義為環流指數,接著選定兩處研究範圍—臺灣地區(WPSH Taiwan)及北太平洋地區(NPSH)建立副高指數,並與各環流指數做相關分析及回歸分析,討論各環流對低層不同範圍的副高變異其貢獻程度差異多寡。研究結果顯示在北太平洋地區副高的環流貢獻量,再分析資料、歷史模擬資料以及SSP 5-8.5情境下未來推估模式資料主要環流貢獻皆為哈德里胞環流,分別占了55%、51%、44%,其次皆為沃克環流分別占了36%、35%、30%。接著比較在臺灣地區副高的環流貢獻量,再分析資料、歷史模擬資料以及SSP 5-8.5情境下未來推估模式資料的主要貢獻環流皆為哈德里環流,分別占了77%、89%、55%,其次的環流貢獻上再分析資料為沃克環流(21%)、歷史模擬資料及SSP 5-8.5情境則為季風環流分別占7%、30%。
吳宜昭、許晃雄、劉鵬、湯寶君、黃威凱、楊竣凱、周佳、隋中興(民101),東亞/西北太平洋氣候變遷,大氣科學,頁215-247。
Bjerknes, J. (1969), Atmospheric teleconnections from the equatorial Pacific, Monthly Weather Review, 97(3), 163–172.
Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S., and Fasullo, J. (2012), The 2011 La Niña: So strong, the oceans fell, Geophysical Research Letters, 39, L19602.
Chang, T., Hsu, H., & Hong, C. (2016), Enhanced Influences of Tropical Atlantic SST on WNP–NIO Atmosphere–Ocean Coupling since the Early 1980s, Journal of Climate, 29(18), 6509-6525.
Chang, C-P., Y. Zhang, and T. Li (2000), Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge, Journal of Climate, 13, 4310–4325.
Chung, P.-H., Sui, C.-H., and Li, T. (2011), Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific, Journal of Geophysical Research, 116, D13111.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2016), Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958.
Grise, K. M., Davis, S. M., Simpson, I. R., Waugh, D. W., Fu, Q., Allen, R. J., Rosenlof, K. H., Ummenhofer, C. C., Karnauskas, K. B., Maycock, A. C., Quan, X., Birner, T., & Staten, P. W. (2019), Recent Tropical Expansion: Natural Variability or Forced Response? Journal of Climate, 32(5), 1551-1571.
He, C., Zhou, T., Lin, A. (2015), Enhanced or Weakened Western North Pacific Subtropical High under Global Warming? Scientific Reports, 5, 16771.
He, C., Zhou, T., Zou, L., Zhang, L. (2012), Two interannual variability modes of the Northwestern Pacific Subtropical Anticyclone in boreal summer. Science China Earth Sciences, 56, 1254–1265.
He, H., Z. Wen, and M. Jian (2001), The climatological characteristics of the onset timing of the South China Sea tropical monsoon in the recent 50 years. Determination of the Onset Date of the South China Sea Monsoon and the Monsoon Index, J. He et al., Eds., China Meteorological Press, 49–54.
Hersbach, H., and Coauthors, (2020), The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049.
Hong, C.-C., T.-C. Chang, and H.-H. Hsu (2014), Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s, Journal of Geophysical Research: Atmospheres, 119, 3715–3372.
Hu, Y., Huang, H., Zhou, C. (2018), Widening and weakening of the Hadley circulation under global warming, Science Bulletin, Volume, 63, Issue 10, 640-644, 2095-9273.
IPCC, (2014), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
Johanson, C. M., & Fu, Q. (2009), Hadley Cell Widening: Model Simulations versus Observations, Journal of Climate, 22(10), 2713-2725.
Julian, P. R., & Chervin, R. M. (1978), A Study of the Southern Oscillation and Walker Circulation Phenomenon, Monthly Weather Review, 106(10), 1433-1451.
Kobayashi, C., and T. Iwasaki (2016), Brewer-Dobson circulation diagnosed from JRA-55, Journal of Geophysical Research: Atmospheres, 121.
Kociuba, G., & Power, S. B. (2015), Inability of CMIP5 Models to Simulate Recent Strengthening of the Walker Circulation: Implications for Projections, Journal of Climate, 28(1), 20-35.
Krishnamurti, T. N. (1971), Tropical east-west circulations during the northern summer. Journal of the Atmospheric Sciences., 28, 1342–1347.
Lau, K., Wu, H., & Bony, S. (1997), The Role of Large-Scale Atmospheric Circulation in the Relationship between Tropical Convection and Sea Surface Temperature, Journal of Climate, 10, 381-392.
Lee, E., Jhun, J., & Park, C. (2005), Remote Connection of the Northeast Asian Summer Rainfall Variation Revealed by a Newly Defined Monsoon Index, Journal of Climate, 18(21), 4381-4393.
Li, T. M., and B. Wang (2005), A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terrestrial, Atmospheric and Oceanic Sciences, 16, 285–314.
Liu, K. S., & Chan, J. C. L. (2013), Inactive Period of Western North Pacific Tropical Cyclone Activity in 1998–2011, Journal of Climate, 26(8), 2614-2630.
Lu, R., and B. Dong (2001), Westward extension of North Pacific subtropical high in summer, Journal of the Meteorological Society of Japan, 79, 1229–1241.
Lu, R., Li, Y., Ryu, C.S. (2008), Relationship between the zonal displacement of the western Pacific subtropical high and the dominant modes of low-tropospheric circulation in summer, Progress in Natural Science, 18, 161–165
Meng, Q., M. Latif, W. Park, N. Keenlyside, V. Semenov, and T. Martin (2011), Twentieth century Walker circulation change: data analysis and model experiments, Climate Dynamics, 38, 1757–1773.
Mitas, C. M., and Clement, A. (2006), Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses, Geophysical Research Letters, 33, L01810.
Park, J.-Y., Jhun, J.-G., Yim, S.-Y., and Kim, W.-M. (2010), Decadal changes in two types of the western North Pacific subtropical high in boreal summer associated with Asian summer monsoon/El Niño–Southern Oscillation connections, Journal of Geophysical Research, 115, D21129.
Plesca, E., Grützun, V., & Buehler, S. A. (2018), How Robust Is the Weakening of the Pacific Walker Circulation in CMIP5 Idealized Transient Climate Simulations? Journal of Climate, 31(1), 81-97.
Power, S. B., and G. Kociuba (2011), What caused the observed twentieth-century weakening of the Walker circulation? Journal of Climate, 24, 6501–6514.
Ren, X., Yang, X., & Sun, X. (2013), Zonal Oscillation of Western Pacific Subtropical High and Subseasonal SST Variations during Yangtze Persistent Heavy Rainfall Events, Journal of Climate, 26(22), 8929-8946.
Saha, S., and Coauthors (2010), The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057.
Santer, B. D., et al. (2005), Amplification of surface temperature trends and variability in the tropical atmosphere, Science, 309(5740), 1551–1556.
Sohn, B.J., Yeh, SW., Schmetz, J. et al. (2013), Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results, Climate Dynamics, 40, 1721–1732.
Sui, C.-H., P. H. Chung, and T. Li (2007), Interannual and interdecadal variability of the summertime western North Pacific subtropical high, Geophysical Research Letters, 34, L11701.
Tanaka, H. L. and Kimura, K. (1996), Intensities of Hadley, monsoon, and Walker circulations in summers of 1993 and 1994, Gross Wetter, 35, 25–46 (in Japanese).
Tanaka, H. L., Ishizaki, N. and Kitoh, A. (2004), Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus A, 56, 250-269.
Tao, S. Y., and L. X. Chen (1987), A review of recent research on the East Asia summer monsoon in China, in Monsoon Meteorology, edited by C. P. Chang, and T. N. Krishnamurti, Oxford University Press, pp. 60–92.
Tokinaga, H., S.-P. Xie, A. Timmermann, S. McGregor, T. Ogata, H. Kubota, and Y. M. Okumura (2012), Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening, Journal of Climate, 25, 1689–1710.
Trenberth, K. E., (1997), The Definition of El Niño, Bulletin of the American Meteorological Society, 78, 2771-2777
Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. A. Held, A. Leetma, and M. J. Harrison (2006), Weakening of the topical atmospheric circulation due to anthropogenic forcing, Nature, 441, 73–76.
Vecchi, G. A., and, B. J. Soden (2007), Global Warming and the Weakening of the Tropical Circulation, Journal of Climate, 20(17), 4316-4340.
Walker, G. T., and E. W. Bliss (1932), World Weather V., Memories of Royal Meteorological Society, 4, No. 36, 53-84.
Walker, G. T., and E. W. Bliss (1937), World Weather VI., Memories of Royal Meteorological Society, 4, No. 39, 119-139.
Wang, B., Wu, R., Lau, K. M. (2001), Interannual variability of the Asian summer monsoon: contrasts between the Indian and the Western North Pacific-East Asian Monsoons, Journal of Climate, 14, 4073–4090.
Wang, B., Xiang, B., Lee, J.Y. (2013), Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Progress in Natural Science, 110, 2718–2722.
Wang, B., and Q. Zhang (2002), Pacific-East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development, Journal of Climate, 15, 3252–3265.
Wang, B., R. Wu, and X. Fu (2000), Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? Journal of Climate, 13, 1517–1536
Wang, Y.-C., Hsu, H.-H., Chen, C.-A., Tseng, W.-L., Hsu, P.-C., Lin, C.-W., et al. (2021), Performance of the Taiwan Earth System Model in simulating climate variability compared with observations andCMIP6 model simulations, Journal of Advances in Modeling Earth Systems, 13, e2020MS002353.
Webster, P. J., and S. Yang (1992), Monsoon and ENSO: Selectively interactive systems, Quarterly Journal of the Royal Meteorological Society, 118, 877-926.
Webster, P. J., V. O. Magaña, T. N. Palmer, R. A. Thomas, M. Yanai, and T. Yasunari (1998), Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103, 14451–14510.
Wu, B., and Zhou, T. (2008), Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high, Geophysical Research Letters, 35, L13701.
Wu, B., T. Li, and T. Zhou (2010), Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Nino decaying summer, Journal of Climate, 23, 2974–2986.
Wu, R., Wang, B. (2002), A Contrast of the East Asian Summer Monsoon–ENSO Relationship between 1962–77 and 1978–93, Journal of Climate, 15(22), 3266-3279.
Zhang, L., & Zhou, T. (2015), Drought over East Asia: A Review, Journal of Climate, 28(8), 3375-3399.
Zhang, Q., Tao, S., and L. Chen (2003), The interannual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia, Acta Meteorologica Sinica, 61(5), 559-568.
Zhao, P., and Z. Zhou (2005), East Asian subtropical summer monsoon index and its relationships to rainfall, Acta Meteorologica Sinica, 63, 933–941.
Zhou, T., et al. (2009), Why the Western Pacific Subtropical High has extended westward since the late 1970s, Journal of Climate, 22(8), 2199–2215.
Zhou, Y. P., K. M. Xu, Y. C. Sud, and A. K. Betts (2011), Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data, Journal of Geophysical Research, 116, D09101.