研究生: |
沈資浩 Shen, Tzu-Hao |
---|---|
論文名稱: |
製備高排列性銀奈米十四面體Langmuir-Blodgett膜作為表面基質輔助游離/脫附質譜之高效能樣品基板 Highly Oriented Langmuir-Blodgett Film of Silver Cuboctahedra as an Effective Matrix-Free Sample Plate in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 銀奈米晶體 、SALDI-MS 、Langmuir-Blodgett(LB)膜 |
英文關鍵詞: | Silver Nanocrystals, SALDI-MS, Langmuir-Blodgett film |
DOI URL: | https://doi.org/10.6345/NTNU202202115 |
論文種類: | 學術論文 |
相關次數: | 點閱:100 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過製備高排列性銀奈米晶體樣品基板的設計來解決在表面輔助游離/脫附質譜最佳加熱點的問題,同時也是擴大應用性的關鍵所在。在本篇論文中,我們使用形狀均勻的銀奈米晶體作為大規模且高排列Langmuir-Blodgett(LB)膜的材料,且將其應用在SALDI-MS中做為無需基質的高效能樣品基板,主要使用的材料有三種不同形狀的銀奈米晶體如正立方體,十四面體,以及八面體做成的LB膜來做為SALDI-MS中檢測葡萄糖的樣品基板。
由結果與一般使用的CHCA和DHB基質相比較之下,使用銀奈米晶體做成的LB膜樣品版其訊號強度,雜訊訊號比,背景雜訊,以及再現性都得到顯著的提高。在這之中特別的是,當使用銀奈米十四面體做成的LB膜可以獲得5.7%的相對訊號。歸功於雷射照射能量的均勻分散使得我們在SALDI-MS測量中獲得非常好的改進,以及在高排列性銀十四面體LB膜下產生了大面積的最佳加熱區域,這種可以立即使用的樣品基板在SALDI-MS中已經顯示出了很大的商業應用機會。
The design of a homogeneous sample plate to solve the sweet heating spot issues is the key step to expand the applicability in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Here, large-scale and highly oriented Langmuir-Blodgett (LB) films of uniform-shaped silver nanocrystals have been fabricated as a highly efficient and matrix-free sample plate in SALDI MS. Three individual silver nanocrystals such as cube, cuboctahedron and octahedron assembled LB films have been applied as the sample plates for glucose detections in SALDI-MS without additional matrix. The results show that the signal intensity, background noise, signal-to-noise ratio and reproducibility have been significantly improved by using the LB films as the sample plate in comparison with commercial matrixes of CHCA and DHB. In particular, the relative signal of 5.7% has been obtained when the LB film of silver cuboctahedron has been applied. The great improvement in the SALDI-MS measurement could be attributed to homogenous dissipation of the laser irradiation energy to create a large area of the sweet heating spot on well-oriented silver cuboctahedron LB film. This ready-to-use sample plate has revealed great commercial applications in SALDI-MS.
[1] H. W. Tang, K. M. Ng, W. Lu, C. M. Che, Anal. Chem. 2009, 81, 4720.
[2] C.-K. Chiang, W.-T. Chen, H.-T. Chang, Chem. Soc. Rev. 2011, 40, 1269.
[3] I. Ocsoy, B. Gulbakan, M. I. Shukoor, X. L. Xiong, T. Chen, D. H. Powell, W. H. Tan, Acs Nano 2013, 7, 417.
[4] T. Yonezawa, H. Tsukamoto, S. Hayashi, Y. Myojin, H. Kawasaki, R. Arakawa, Analyst 2013, 138, 995.
[5] J.-I. Kim, J.-M. Park, S.-J. Hwang, M.-J. Kang, J.-C. Pyun, Anal. Chim. Acta 2014, 836, 53.
[6] H.-Z. Lai, S.-G. Wang, C.-Y. Wu, Y.-C. Chen, Anal. Chem. 2015, 87, 2114.
[7] L. Sundar, F. Rowell, Anal. Methods 2015, 7, 3757.
[8] J. Sunner, E. Dratz, Y. C. Chen, Anal. Chem. 1995, 67, 4335.
[9] T. Watanabe, H. Kawasaki, T. Yonezawa, R. Arakawa, J. Mass Spectrom. 2008, 43, 1063.
[10] R. Arakawa, H. Kawasaki, Anal. Sci. 2010, 26, 1229.
[11] S. Nitta, H. Kawasaki, T. Suganuma, Y. Shigeri, R. Arakawa, J. Phys. Chem. C 2013, 117, 238.
[12] T.-C. Chiu, L.-C. Chang, C.-K. Chiang, H.-T. Chang, J. Am. Soc. Mass. Spectrom. 2008, 19, 1343.
[13] K. Shrivas, H.-F. Wu, Rapid Commun. Mass Spectrom. 2008, 22, 2863.
[14] M.-T. Wang, M.-H. Liu, C. R. C. Wang, S. Y. Chang, J. Am. Soc. Mass. Spectrom. 2009, 20, 1925.
[15] H. Yan, N. Xu, W.-Y. Huang, H.-M. Han, S.-J. Xiao, Int. J. Mass spectrom. 2009, 281, 1.
[16] T.-R. Kuo, J.-S. Chen, Y.-C. Chiu, C.-Y. Tsai, C.-C. Hu, C.-C. Chen, Anal. Chim. Acta 2011, 699, 81.
[17] S. K. Kailasa, H.-F. Wu, Microchim. Acta 2013, 180, 405.
[18] X. Wen, S. Dagan, V. H. Wysocki, Anal. Chem. 2007, 79, 434.
[19] G. Gedda, S. Pandey, M. L. Bhaisare, H.-F. Wu, RSC Adv. 2014, 4, 38027.
[20] B. N. Y. Vanderpuije, G. Han, V. M. Rotello, R. W. Vachet, Anal. Chem. 2006, 78, 5491.
[21] E. T. Castellana, D. H. Russell, Nano Lett. 2007, 7, 3023.
[22] H. P. Wu, C. L. Su, H. C. Chang, W. L. Tseng, Anal. Chem. 2007, 79, 6215.
[23] R. C. Gamez, E. T. Castellana, D. H. Russell, Langmuir 2013, 29, 6502.
[24] Y.-K. Kim, D.-H. Min, ACS Appl. Mater. Interfaces 2012, 4, 2088.
[25] L. Colaianni, S. C. Kung, D. K. Taggart, R. A. Picca, J. Greaves, R. M. Penner, N. Cioffi, Anal. Bioanal. Chem. 2014, 406, 4571.
[26] C.-P. Fu, S. Lirio, W.-L. Liu, C.-H. Lin, H.-Y. Huang, Anal. Chim. Acta 2015, 888, 103.
[27] A. Sangsuwan, B. Narupai, P. Sae-ung, S. Rodtamai, N. Rodthongkum, V. P. Hoven, Anal. Chem. 2015, 87, 10738.
[28] M. Hong, L. Xu, F. Wang, Z. Geng, H. Li, H. Wang, C.-z. Li, Analyst 2016, 141, 2712.
[29] T.-R. Kuo, D.-Y. Wang, Y.-C. Chiu, Y.-C. Yeh, W.-T. Chen, C.-H. Chen, C.-W. Chen, H.-C. Chang, C.-C. Hu, C.-C. Chen, Anal. Chim. Acta 2014, 809, 97.
[30] S. S. Hinman, C.-Y. Chen, J. Duan, Q. Cheng, Nanoscale 2016, 8, 1665.
[31] G. Lee, S.-E. Bae, S. Huh, S. Cha, RSC Adv. 2015, 5, 56455.
[32] R. Liu, J.-f. Liu, X.-x. Zhou, G.-b. Jiang, Anal. Chem. 2011, 83, 3668.
[33] A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol. 2007, 2, 435.
[34] A. R. Tao, J. Huang, P. Yang, Acc. Chem. Res. 2008, 41, 1662.
[35] Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotechnol. 2010, 5, 15.
[36] N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Chem. Rev. 2011, 111, 3913.
[37] G. G. Roberts, Adv. Phys. 1985, 34, 475.
[38] E. Meyer, L. Howald, R. M. Overney, H. Heinzelmann, J. Frommer, H. J. Guntherodt, T. Wagner, H. Schier, S. Roth, Nature 1991, 349, 398.
[39] G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, C. R. Brown, Nature 1992, 357, 393.
[40] D. K. Schwartz, J. Garnaes, R. Viswanathan, J. A. N. Zasadzinski, Science 1992, 257, 508.
[41] L. F. Chi, M. Anders, H. Fuchs, R. R. Johnston, H. Ringsdorf, Science 1993, 259, 213.
[42] J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, D. K. Schwartz, Science 1994, 263, 1726.
[43] S. Paul, C. Pearson, A. Molloy, M. A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, M. C. Petty, Nano Lett. 2003, 3, 533.
[44] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat. Nanotechnol. 2008, 3, 538.
[45] L. Wang, Y. Li, Q. Wang, L. Zou, B. Ye, Sens. Actuator B-Chem. 2016, 228, 214.
[46] A. de Barros, M. Ferreira, C. J. Leopoldo Constantino, J. R. Ribeiro Bortoleto, M. Ferreira, ACS Appl. Mater. Interfaces 2015, 7, 6828.
[47] 科技創意產業發展, 楊啟榮, 台灣師範大學機電科技研究所
http://www.ccda.org.tw/sing_up/CreativityManagement/HumanResources/003.ht
m
[48] X. Luo, T. Ishihara. Appl. Phys. Lett 2004, 84, 4780-4782.
[49] George M. Whitesides, B. Grzybowski. Science 2002, 295, 2418-2421.
[50] B. D. Yao, Y.F. Chan, N. Wang. Appl. Phys. Lett 2002, 81, 757-759.
[51] Q. Ye, P. Y. Liu, Z.F. Tang, L. Zhai. Vacuum 2007, 81, 627-631.
[52] T. Sharda, M. M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno.
Diamond and Related Materials 2001, 10, 561-567.
[53] K.F Hsu, S.Y Tsay, B.J Hwang. J. Mater. Chem 2004, 14, 2690-2695.
[54] L. Yan, R. Yu, J. Chen and X. Xing. Crystal Growth & Design 2008, 8, 1474-1477
[55] E. Reverchon. Journal of Supercritical Fluids 1999, 15, 1-21.
[56] P. D. Cozzoli, A. K, H. Weller. J. Phys. Chem. B 2005, 109, 2638-2644.
[57] W. Jiang, H.C. Yang, S.Y. Yang, H.E. Horng, J.C. Hung, Y.C. Chen, C.Y. Hong . Journal of Magnetism and Magnetic Material 2004, 283, 210-214.
[58] 牟中原、陳家俊,科學發展 2000,28 (4) ,581-288
[59] J.A. Scholl, A. García-Etxarri, A. L. Koh, J.A. Dionne. Nano Lett 2013, 13, 564-569.
[60] C.S.S.R. Kumar, Faruq Mohammad Advanced Drug Delivery Reviews 2011, 63, 789-808.
[61]A. Afkhami, M. Saber-Tehrani, H. Bagheri. Journal of Hazardous Materials 2010, 181, 836-844.
[62] A.V. Zayats, Igor I. Smolyaninov, A. A. Maradudin. Physics Reports 2005, 408, 131-314.
[63] A.Tao, P. Sinsermsuksakul, P. Yang. Angew. Chem. Int. Ed. 2006, 45, 4597-4601.
[64] F. Fievet, J.P. Lanier, B. Blin, B. Beaudoin, M. Figlarz. Solid State Ionics. 1989, 32-33 Part 1, 198-205.
[65] Y. Sun, Y. Xia. Science. 2002, 298, 2176-2179.
[66] Ocsoy, I., Gulbakan, B., Shukoor, M. I., Xiong, X., Chen, T., Powell, D. H. & Tan, W. ACS Nano. 2013, 7, 417–427.