研究生: |
鄭伃庭 Cheng, Yu-Ting |
---|---|
論文名稱: |
以文字探勘方法檢視社群網站使用者之態度與意見:以流感疫苗為例 Using Text Mining to Investigate Users' Attitude and Opinions : A Case Study of Influenza Vaccine |
指導教授: |
邱銘心
Chiu, Ming-Hsin |
口試委員: |
謝吉隆
Hsieh, Ji-Lung 陳世娟 Chen, Shih-Chuan 邱銘心 Chiu, Ming-Hsin |
口試日期: | 2022/07/13 |
學位類別: |
碩士 Master |
系所名稱: |
圖書資訊學研究所 Graduate Institute of Library and Information Studies |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 社群網站 、LDA 、詞嵌入 、情緒分析 |
英文關鍵詞: | Latent Dirichlet allocation, Word Embedding, Sentiment analysis, Social Media |
研究方法: | 主題分析 |
DOI URL: | http://doi.org/10.6345/NTNU202201423 |
論文種類: | 學術論文 |
相關次數: | 點閱:325 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從1918年流感大流行後,流感病毒始終無法徹底絕跡。在每年的冬、春兩季通常會到達疫情之高峰。雖然安全有效的流感疫苗已經施打了超過60年,台灣每年也會採購公費流感疫苗提供九類人施打,並且積極宣傳施打流感疫苗之重要性,但是不少家長仍因畏懼流感疫苗之副作用而不願讓子女施打流感疫苗。因此本研究為幫助政府或相關單位,能準確瞭解社群網站對於流感疫苗之看法與想法,更加精確地擬定政策,所以本研究藉由分析社群網站之相關文章,釐清流感疫苗的討論主題、內容以及情緒等,對社群網站使用者的輿論做更多的解釋與揭露。
隨著社群網站的興盛,人們接收資訊與相互討論的管道也從電視、新聞等傳統媒體逐漸轉移至網路。也因此,本研究使用有別於傳統問卷調查的自動化文字探勘與情緒分析進行社群網路文本的用詞與情緒分析。研究之文本取自社群網站PTT「BabyMother」板,從2016~2021年共260篇文章、12,174則留言。根據研究結果,在社群網站PTT所討論的流感疫苗文章大致可分為五種主題,討論度最高的主題為「施打流感疫苗之考量」;不同主題以及文章和留言之議題皆有差異,例如在「流感疫苗副作用討論」的文章中「媽媽」一詞出現頻率較高,在留言中則否,顯示留言者相較於成人對幼兒之關注程度更高;在情緒分析方面則是顯示文章之情緒大致為中立,留言之情緒則較為豐富,尤其在「流感疫苗副作用討論」中使用者之負面情緒比例為五個主題中最多。根據以上研究結果,本研究提出相應的建議給醫療政策擬定者、幼兒照護者與未來可行之研究:
一、對醫療政策擬定者的建議:醫療政策之擬定人員能多製作流感疫苗副作用與國光疫苗之衛教宣導,以降低幼兒照護者對流感疫苗的擔憂。此外,亦能藉由公眾人物或是在網路中具影響能力的人物於社群網站進行宣導與正面的衛教,以提升幼兒照護者對於流感疫苗的信任感。
二、對幼兒照護者的建議:幼兒照護者在社群網站找尋網路流感疫苗相關資訊時,可至相關闢謠專區進行資訊可信度的確認。如欲提供資訊者,應先確實查證資訊的正確性,以避免傳播之資訊為假資訊。
三、未來研究建議:(一)使用不同社群網站之文章進行更多元的分析;(二)使用問卷或訪談的方式更深入探討社群網站使用者對流感疫苗之看法;(三)利用編碼更深入研究使用者在社群網站之發文與留言之差異性。
Since the 1918 influenza pandemic, the influenza virus has never been completely eliminated. The peak of the epidemic is usually reached in winter and spring every year. Although safe and effective influenza vaccines have been administered for more than 60 years, Taiwan also purchases public-funded influenza vaccines every year to provide nine types of people to vaccinate, and actively promotes the importance of influenza vaccination, but many parents are still reluctance to have their children vaccinated against the flu because of side effects. Therefore, in order to help the government or related units, this study can accurately understand the views and thoughts on influenza vaccines on social media, and formulate policies more accurately. This study uses the technique of text mining to analysis content and emotions on social media, to explain and expose the public opinion.
With the prosperity of social networking sites, the channels for people to receive information and discuss with each other have gradually shifted from traditional media such as TV and news to the Internet. Therefore, this study uses text mining and sentiment analysis, which is different from traditional questionnaires, to analyze the content and sentiment of social network texts. This study takes the social website PTT "BabyMother" board as the research object, extracts 260 articles and 12,174 comments about influenza vaccine from 2016 to 2021. According to the research results, the influenza vaccine articles discussed on the social networking site PTT can be roughly divided into five topics, and the most discussed topic is "Considerations of Influenza Vaccination"; different topics and the terms used in articles and comments are different. For example, the word "mother" appears more frequently in the article on "Influenza Vaccine Side Effects Discussion", but not in comments, indicating that the commenters are more concerned about children than adults; in sentiment analysis. The sentiment of the article is generally neutral, while the sentiment of the comments is more abundant, especially in the "Influenza Vaccine Side Effects Discussion", the proportion of users' negative emotions is the highest among the five topics. Based on the above findings, this study proposes suggestions for medical and health organizations, parents and future researches:
1. Recommendations for medical policy planners: Medical policy planners can make more health education publicity of flu vaccine side effects and AdimFlu-S vaccine to reduce the concerns of parents about flu vaccines. In addition, public figures or influential figures on the Internet can also conduct publicity and positive health education on social media, so as to enhance the trust of parents in influenza vaccines.
2. Recommendations for parents: When looking for information about influenza vaccine online on social networking sites, parents can go to the relevant rumor-refuting section to confirm the credibility of the information. Those who want to provide information should verify the correctness of the information to avoid dissemination of fake information.
3. Suggestions for future research: (1) Use content from different social media for more meta-analysis; (2) Use questionnaires or interviews to delve deeper into social media users' perceptions of influenza vaccine; (3) Use coding to further study the differences between users' posts and comments on social media.
天下雜誌(2020)。武漢病毒 台灣罩得住嗎?。天下雜誌,691。
王馨儀、楊玉玟、許瑜真、王秉誠、楊世仰(2013)。臺日預防接種受害救濟體系之比較分析。疫情報導,29(1),頁 1-9。doi: 10.6524/EB.201301_29(1).0001
朱正一、詹瑞慧(2010)。流感疫苗接種行為相關因素探討-以台灣花蓮地區禽畜養殖業者為例。台灣公共衛生雜誌,29(4),頁 337-346。doi: 10.6288/TJPH2010-29-04-07
朱晏廷、邱銘心(2019)。醫師個人FACEBOOK粉絲專頁之醫病互動內容分析研究。圖書館學與資訊科學,45(2),頁 96-124。doi: 10.6245/JLIS.201910_45(2).0004
江今葉(2020)。挺台灣推特帳號 遭國際民航組織封鎖,中央社。取自 https://www.cna.com.tw/news/firstnews/202001280031.aspx
行政院衛生署疾病管制局、臺灣兒科醫學會、臺灣感染症醫學會(主編)(2011)。認識流感疫苗。行政院衛生署疾病管制局。
西埜章(1995)。予防接種と法。載於。(頁 36-59)。日本:一粒社。
何麗莉、陳秋美、趙偉翔、池宜倩、黃惠萍、周雅萍、劉士豪(2012)。全國3歲以下嬰幼兒照顧者決定攜子女接種流感疫苗之影響因素探討。疫情報導,28(3),頁 33-44。doi: 10.6524/EB.201202_28(3).0001
吳美玲(2010)。影響醫院從業人員接種流感疫苗之因素探討。未出版之碩士論文,長榮大學職業安全與衛生學系碩士班,台南市。
吳家豪、馬麗菁(2017)。線上健康類新聞之分析與預測-巨量資料架構。企業管理學報(113),頁 1-29。doi: 10.3966/102596272017060113001
呂宜穎(2012)。衛教介入-家長對於其學齡前幼童接種流感疫苗之相關因素探討-以雲林縣為調查對象。未出版之碩士論文,中興大學微生物暨公共衛生學研究所,台中市。
宋季純、邱南昌(2012)。流感疫苗的發展趨勢。感染控制雜誌,22(2)頁 85-87。
李孟頻(2021)。他們的精彩片段,我的幕後花絮:社群網站上社會比較、自我評價與憂鬱之跨時間影響機制。未出版之碩士論文,國立臺灣大學心理學研究所,台北市。
李宜昌(2011)。以健康信念模式探討使用網路資訊進行體重控制行為之意願: 與過去的彙總研究發現之比較。資訊管理研究。
李筱慧(2009)。網路運動與議題建構之研究—以PTT上之「黑米事件」相關文本為例。未出版之碩士論文,淡江大學大眾傳播學系碩士班,新北市。
李儼倫(2016)。用字典為基礎判別新聞事件類型:以體育新聞為例。未出版之碩士論文,淡江大學資訊工程學系碩士班,新北市。
汪憶湘(2019)。應用文字探勘技術探討學生之戒菸經驗。健康生活與成功老化學刊, 11(1),頁 1-13。
林宜鴻(2010)。基於機率式潛藏語意分析之聲學特性及其在語音辨識上之應用。未出版之碩士論文,國立臺灣大學電信工程學研究所,台北市。
林昆霈(2021)。中高齡民眾對於流感疫苗接種之動機、認知與行為意圖研究。未出版之碩士論文,大仁科技大學藥學系碩士班,屏東縣。
林惠賢(2007)。醫療機構工作人員對流感與流感疫苗的認知,態度及接種流感疫苗行為之探討。台灣醫院感染管制學會第十四次會員大會暨學術研討會,頁 54-54。
林頌堅(2014)。以主題模型方法為基礎的資訊計量學領域研究主題分析。教育資料與圖書館學, 51(4),頁 499-523。doi: 10.6120/JoEMLS.2014.514/0633.RS.AM
邱美玉,許建邦,黃彥芳,陳昶勳(2015)。臺灣幼兒接種卡介苗政策之評估及展望。疫情報導,31(5),頁 104-114。
邱鈺庭(2017)。應用健康信念模式探討50歲以上民眾施打流感疫苗意願之研究。未出版之碩士論文,中臺科技大學醫療暨健康產業管理系碩士班,台中市。
柳姚仁(2015)。運用Facebook公開資料監測類流感疫情。未出版之碩士論文,淡江大學資訊管理學系碩士在職專班,新北市。
洪新原,黃于紋,賴慧敏(2015)。以彙總分析法探討影響知識分享之關鍵因素。資訊管理學報, 22(4),頁 403-443。
洪瑜彣(2018)。運用社群大數據進行文字探勘探討台灣民眾對於糖尿病之看法與輿情分析。未出版之碩士論文,國立成功大學老年學研究所,台南市。
孫立馨(2021)。臺灣大專院校女學生之減重瘦身資訊需求與資訊行為。未出版之碩士論文,國立臺灣師範大學圖書資訊學研究所,台北市。
財團法人台灣網路資訊中心(2021)。2020 台灣網路報告。 取自 https://report.twnic.tw/2020/
張日威(2014)。應用LDA進行Plurk主題分類及使用者情緒分析。未出版之碩士論文,國立雲林科技大學資訊管理系,雲林縣。
張至善(2018)。以社群發文內容為基礎之社群吸引力解析模式。未出版之碩士論文,國立清華大學全球營運管理碩士雙聯學位學程,新竹市。
張雅雯、周汎澔、簡淑媛(2019)。孕婦接種流感疫苗-護理人員的因應策略探討。護理雜誌,66(4),頁 79-86。 doi: 10.6224/JN.201908_66(4).10
張靜慧(2017)。全家備戰防流感,康健雜誌。取自 https://www.commonhealth.com.tw/article/75915
莊曉芸(2021)。國小學童家長對其子女接種或不接種流感疫苗意願之影響因素:以金門縣為例。未出版之碩士論文,國立高雄大學高階經營管理碩士在職專班(EMBA),高雄市。
許嘉伊(2006)。流感疫苗接種效益分析, 風險評估與實行策略。臺灣經濟研究月刊, 29(3),頁 46-51。
許曉霈、李子奇、張瑞瑤、於淑娟、黃久美(2018)。應用文字探勘探索痛經婦女之疾病經驗。健康生活與成功老化學刊, 10(1),頁 39-53。
郭慧菁(2016)。國小學童家長對其子女接種流感疫苗決策之相關因素探討。未出版之碩士論文,國立臺北護理健康大學護理研究所,台北市。
陳一竹(2021)。疫苗戰爭,接種與反接種。人人健康。
陳咸蓁(2019)。預防接種受害補償制度之研究—我國與德國法制之比較分析。未出版之碩士論文,國立中央大學,桃園市。
陳奕安(2016)。適用於中文史料文本之標記式主題模型分析方法研究。未出版之碩士論文,國立政治大學資訊科學學系碩士班,台北市。
陳彥汝(2015)。預防接種受害救濟之爭議研究。未出版之碩士論文,國立臺北大學臺北大學法律學系一般生組,台北市。
陳彥龍(2020)。中文斷詞方法之研究與實作。未出版之碩士論文,國立暨南國際大學資訊工程學系,南投縣。
陳桂嬌(2019)。中高齡者擷取健康資訊行為與健康促進生活型態之研究。未出版之碩士論文,國立臺灣師範大學高階經理人企業管理碩士在職專班,台北市。
陳清文(2010)。應用健康信念模式-探討國軍衛生部隊官兵H1N1疫苗接種意願及其影響因素。未出版之碩士論文,臺北醫學大學醫務管理學研究所,台北市。
陳潔(2018)。跨國、跨媒介的健康議題傳散與輿論探討:以 HPV 疫苗為例。未出版之碩士論文,國立臺灣大學新聞研究所,台北市。
黄梦婷、张鹏翼(2015)。社会化问答社区的协作方式与效果研究: 以知乎为例。图书情报工作,59(12),頁85。
曾皓勳(2015)。基於LDA模型的YouTube資通訊科技趨勢分析系統。未出版之碩士論文,國立中興大學資訊科學與工程學系所,台中市。
賀信華(2019)。應用LDA及BPN在長篇電影評論分析。未出版之碩士論文,國立中興大學科技管理研究所,台中市。
黃以辰(2020)。比較晶圓雙雄的策略變化:主題模型方法的應用。未出版之碩士論文,國立清華大學清華大學科技管理研究所,新竹市。
黃欣萍(2018)。運用健康信念模式探討新竹市幼兒園托育人員流感疫苗接種行為意願之研究。未出版之碩士論文,臺北醫學大學護理學系碩士暨碩士在職專班,台北市。
黃喬煜(2020)。針對過重或肥胖病人利用社群網站輔助進行減重行為改變介入–隨機對照研究。未出版之碩士論文,國立臺灣大學健康政策與管理研究所,台北市。
黃鼎翔(2019)。以機器學習實現GitHub倉庫之推薦。未出版之碩士論文,中原大學資訊工程研究所,桃園市。
黃蕙芬、邱銘心、鄭惟中(2017)。醫學中心電子報之消費者健康資訊內容分析研究。醫療資訊雜誌,26(2),頁 23-34+36。
楊博欽、張曉婷、陳曾基(2020)。淺談流感疫苗與其最新相關研究。臨床醫學月刊,86(4),頁 592-597。doi: 10.6666/ClinMed.202010_86(4).0107
楊雅婷、唐功培、李啟仁、吳潔人、蘇維文、許怡欣(2018)。非營利組織社群媒體的健康資訊傳播:以某醫學大學醫療體系健康公益粉絲團經營為例。醫務管理期刊,19(3),頁 175-191。 doi: 10.6174/JHM.201809_19(3).175
維基百科(2021)。批踢踢。取自 https://zh.wikipedia.org/wiki/%E6%89%B9%E8%B8%A2%E8%B8%A2
劉嘉年(2010)。台灣社區老人接受流行性感冒疫苗注射的相關因素分析。台灣醫學,14(6),頁 616-624。doi: 10.6320/FJM.2010.14(6).03
樓逸軒(2016)。運用詞彙重組方法改善中文斷詞。未出版之碩士論文,中原大學資訊管理研究所,桃園市。
蔡其宏(2014)。動態資料備份系統及方法。未出版之碩士論文,中央大學資訊工程學系碩士在職專班,桃園市。
蔡宗益,賴寧生,郭淑慧,江瑞坤(2011)。南臺灣中老年健檢民眾接種 H1N1 疫苗的意願和其相關因素調查。志為護理-慈濟護理雜誌,10(3),頁 73-82。
蔡秉修、林陳立、施淑芳(2017)。以理論為架構探討影響孕婦季節性流感疫苗接種意圖之相關因素:以臺北市立聯合醫院為例。台灣公共衛生雜誌, 36(6),頁 571-588。 doi: 10.6288/TJPH201736106085
衛生福利部食品藥物管理署(2019)。藥品臨床試驗申請須知。
衛生福利部疾病管制屬(2020)。疾病介紹。 取自 https://www.cdc.gov.tw/Category/Page/HMC9qDI4FA-gDrbcnFlXgg
衛生福利部疾病管制屬(2021a)。110年度流感疫苗接種計畫。
衛生福利部疾病管制屬(2021b)。疫苗接種計畫篇。 取自 https://www.cdc.gov.tw/Category/QAPage/jWgjO_d826X_F9TURP2_Qg
鄭惟中、邱銘心(2015)。我國政府衛生福利機關(構)網站提供消費者健康資訊服務之初探。大學圖書館, 19(2),頁 69-107。 doi: 10.6146/univj.19-2.04
蕭婉蓉(2018)。探討幼兒園家長對其子女接種四價流感疫苗意願之相關因素分析-以高雄某行政區為例。未出版之碩士論文,嘉南藥理大學醫務管理系,嘉義縣。
駱明潔、蔡端慧(2015)。中部地區學齡前幼兒主要照顧者對流感認知及流感預防行為之調查研究。疫情報導, 31(19),頁 464-472。 doi: 10.6524/EB.20151013.31(19).001
謝吉隆、楊苾淳(2018)。從「應變自然」到「社會應變」:以文字探勘方法檢視國內風災新聞的報導演變。未出版之學位論文,淡江大學資訊與圖書館學系教育資料與圖書館學,新北市。
謝佩娟(2011)。臺北市信義區學齡前幼兒家長對其子女接種流感疫苗的意願因素分析。未出版之碩士論文,國立臺灣大學公共衛生碩士學位學程,台北市。
謝孟樺(2018)。考量上下文字詞共現關係之短文斷詞研究。未出版之碩士論文,國立中興大學資訊科學與工程學系,台中市。
蘇妤芳、姜秀子、邱南昌、李聰明(2019)。影響醫療機構工作人員接種流感疫苗意願之因素探討。感染控制雜誌,29(3),頁 112-123。doi: 10.6526/ICJ.201906_29(3).0002
Advisory Committee on Immunization Practices. (2021). ACIP Recommendations. from https://www.cdc.gov/vaccines/acip/recommendations.html
Ahmed, N., Quinn, S. C., Hancock, G. R., Freimuth, V. S., & Jamison, A. (2018). Social media use and influenza vaccine uptake among White and African American adults. Vaccine, 36(49), 7556-7561. doi: 10.1016/j.vaccine.2018.10.049
Ball, R., Braun, M. M., Chen, R. T., Ellenberg, S. S., English-Bullard, R., Haber, P., . . . Pool, V. (2003). Surveillance for safety after immunization; vaccine adverse event reporting system (VAERS)-United States 1991-2001.
Bessell, T. L., McDonald, S., Silagy, C. A., Anderson, J. N., Hiller, J. E., & Sansom, L. N. J. H. E. (2002). Do Internet interventions for consumers cause more harm than good? A systematic review. 5(1), 28-37.
Betsch, C., Renkewitz, F., Betsch, T., & Ulshöfer, C. J. J. o. h. p. (2010). The influence of vaccine-critical websites on perceiving vaccination risks. 15(3), 446-455.
Bian, J., Yoshigoe, K., Hicks, A., Yuan, J., He, Z., Xie, M., . . . Modave, F. (2016). Mining Twitter to Assess the Public Perception of the “Internet of Things”. PLoS One, 11(7), e0158450-e0158450. doi: 10.1371/JOURNAL.PONE.0158450
Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.
Blei, D. M., Ng, A. Y., & Jordan, M. I. J. t. J. o. m. L. r. (2003). Latent dirichlet allocation. 3, 993-1022.
Bocquier, A., Fressard, L., Paraponaris, A., Davin, B., & Verger, P. (2017). Seasonal influenza vaccine uptake among people with disabilities: A nationwide population study of disparities by type of disability and socioeconomic status in France. Prev Med, 101, 1-7. doi: 10.1016/j.ypmed.2017.05.014
Boiron, D., Fabbri, A., Larré, P., Pavloff, N., Westbrook, C. I., & Ziń, P. (2015). Quantum Signature of Analog Hawking Radiation in Momentum Space. Phys Rev Lett, 115(2), 025301. doi: 10.1103/PhysRevLett.115.025301
Bonnevie, E., Rosenberg, S. D., Kummeth, C., Goldbarg, J., Wartella, E., & Smyser, J. (2020). Using social media influencers to increase knowledge and positive attitudes toward the flu vaccine. PLoS One, 15(10), e0240828. doi: 10.1371/journal.pone.0240828
Boyd, D. M., & Ellison, N. B. J. J. o. c. m. C. (2007). Social network sites: Definition, history, and scholarship. 13(1), 210-230.
Cheng, H., Laron, M., Schiffman, J. S., Tang, R. A., Frishman, L. J. J. I. o., & science, v. (2007). The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. 48(12), 5798-5805.
CISA. (2020). Clinical Immunization Safety Assessment (CISA) Project. from https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/cisa/index.html
CKIP Lab. (2019). ckiptagger. from https://github.com/ckiplab/ckiptagger
Cole-Lewis, H., Perotte, A., Galica, K., Dreyer, L., Griffith, C., Schwarz, M., . . . Augustson, E. J. J. o. m. I. r. (2016). Social network behavior and engagement within a smoking cessation Facebook page. 18(8), e205.
Ellison, N. B., & Boyd, D. J. T. O. h. o. i. s. (2013). Sociality through social network sites. 151-172.
Fox, S., & Rainie, L. J. P. e. (2002). E-patients and the online health care revolution.(E-Health). 28(6), 14-18.
Franklin, T. (2017). The Guardians (Vol. 2): TM Franklin.
Grajales III, F. J., Sheps, S., Ho, K., Novak-Lauscher, H., & Eysenbach, G. (2014). Social media: a review and tutorial of applications in medicine and health care. J Med Internet Res, 16(2), e13.
Greene, M. T., Fowler, K. E., Ratz, D., Krein, S. L., Bradley, S. F., & Saint, S. J. J. n. o. (2018). Changes in influenza vaccination requirements for health care personnel in US hospitals. 1(2), e180143-e180143.
Grohskopf, L. A., Alyanak, E., Broder, K. R., Blanton, L. H., Fry, A. M., Jernigan, D. B., & Atmar, R. L. (2020). Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices — United States, 2020–21 Influenza Season. MMWR. Recommendations and Reports, 69(8). doi: 10.15585/MMWR.RR6908A1
Han, Y. K., Michie, S., Potts, H. W., & Rubin, G. J. (2016). Predictors of influenza vaccine uptake during the 2009/10 influenza A H1N1v ('swine flu') pandemic: Results from five national surveys in the United Kingdom. Prev Med, 84, 57-61. doi: 10.1016/j.ypmed.2015.12.018
Harris, M., Smith, B., Veale, A., Esterman, A., Frith, P., & Selim, P. J. C. r. d. (2006). Providing patients with reviews of evidence about COPD treatments: a controlled trial of outcomes. 3(3), 133-140.
Harris, M., Smith, B., Veale, A., Esterman, A., Frith, P., & Selim, P. J. C. r. d. (2009). Providing reviews of evidence to COPD patients: controlled prospective 12-month trial. 6(3), 165-173.
Hellfritzsch, M., Thomsen, R. W., Baggesen, L. M., Larsen, F. B., Sørensen, H. T., & Christiansen, C. F. (2017). Lifestyle, socioeconomic characteristics, and medical history of elderly persons who receive seasonal influenza vaccination in a tax-supported healthcare system. Vaccine, 35(18), 2396-2403. doi: 10.1016/j.vaccine.2017.03.040
Hernández-García, I., Giménez-Júlvez, T. J. I. J. o. E. R., & Health, P. (2021). YouTube as a Source of Influenza Vaccine Information in Spanish. 18(2), 727.
Hofmann, T. (1999). Probabilistic latent semantic indexing. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval.
Horowitz, J. J. T. N. Y. T., September. (2018). Italy Loosens Vaccine Law Just as Children Return to School. 20, 2018.
HRSA. (2021). National Vaccine Injury Compensation Program. from https://www.hrsa.gov/vaccine-compensation/index.html
ISO. (2021). Emergency Preparedness and Vaccine Safety. from https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/emergencypreparedness/index.html
Jieba. (2020). Jieba. from https://github.com/fxsjy/Jieba
Johnson, K. J., Mueller, N. L., Williams, K., & Gutmann, D. H. J. A. j. o. m. g. P. A. (2014). Evaluation of participant recruitment methods to a rare disease online registry. 164(7), 1686-1694.
Kim, N., & Mountain, T. P. (2017). Role of non-traditional locations for seasonal flu vaccination: Empirical evidence and evaluation. Vaccine, 35(22), 2943-2948. doi: 10.1016/j.vaccine.2017.04.023
Lavertu, A., Hamamsy, T., & Altman, R. B. (2021). Quantifying the severity of adverse drug reactions using social media: Network analysis. J Med Internet Res, 23(10). doi: 10.2196/27714
Li, M., Gao, J., Huang, C., & Li, J. (2003). Unsupervised training for overlapping ambiguity resolution in Chinese word segmentation. Paper presented at the Proceedings of the second SIGHAN workshop on Chinese language processing.
Luo, X., Sun, M., & Tsou, B. K. (2002). Covering ambiguity resolution in Chinese word segmentation based on contextual information. Paper presented at the COLING 2002: The 19th International Conference on Computational Linguistics.
Lyu, J. C., & Luli, G. K. (2021). Understanding the public discussion about the centers for disease control and prevention during the COVID-19 pandemic using twitter data: Text mining analysis study. J Med Internet Res, 23(2). doi: 10.2196/25108
Macias, W., Lewis, L. S., & Smith, T. L. J. J. o. H. C. (2005). Health-related message boards/chat rooms on the web: Discussion content and implications for pharmaceutical sponsorships. 10(3), 209-223.
Madden, K., Nan, X., Briones, R., & Waks, L. (2012). Sorting through search results: a content analysis of HPV vaccine information online. Vaccine, 30(25), 3741-3746. doi: 10.1016/j.vaccine.2011.10.025
Mah, M. W., Hagen, N. A., Pauling-Shepard, K., Hawthorne, J. S., Mysak, M., Lye, T., & Louie, T. J. J. A. j. o. i. c. (2005). Understanding influenza vaccination attitudes at a Canadian cancer center. 33(4), 243-250.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. J. a. p. a. (2013). Efficient estimation of word representations in vector space.
Mo, P., & Lau, J. J. H. e. r. (2015). Influenza vaccination uptake and associated factors among elderly population in Hong Kong: the application of the Health Belief Model. 30(5), 706-718.
Moorhead, S. A., Hazlett, D. E., Harrison, L., Carroll, J. K., Irwin, A., & Hoving, C. J. J. o. m. I. r. (2013). A new dimension of health care: systematic review of the uses, benefits, and limitations of social media for health communication. 15(4), e1933.
Morganroth, M., Pape, G., Rozenfeld, Y., & Heffner, J. E. J. P. m. (2016). Multidisciplinary COPD disease management program: impact on clinical outcomes. 128(2), 239-249.
Mossad, S. B. (2018). Influenza update 2018-2019: 100 years after the great pandemic. Cleve Clin J Med, 85(11), 861-869. doi: 10.3949/ccjm.85a.18095
Nanath, K., Kaitheri, S., Malik, S., & Mustafa, S. (2022). Examination of fake news from a viral perspective: an interplay of emotions, resonance, and sentiments. Journal of Systems and Information Technology, 24(2), 131-155. doi: 10.1108/JSIT-11-2020-0257
Ngoc, P. T., & Yoo, M. (2014). The lexicon-based sentiment analysis for fan page ranking in Facebook. Paper presented at the The International Conference on Information Networking 2014 (ICOIN2014).
Nowak, G. J., Sheedy, K., Bursey, K., Smith, T. M., & Basket, M. (2015). Promoting influenza vaccination: insights from a qualitative meta-analysis of 14 years of influenza-related communications research by U.S. Centers for Disease Control and Prevention (CDC). Vaccine, 33(24), 2741-2756. doi: 10.1016/j.vaccine.2015.04.064
Offit, P. A. (2005). The Cutter incident, 50 years later. New England Journal of Medicine, 352(14), 1411-1412.
Opel, D. J., Sonne, J. A., & Mello, M. M. J. N. E. J. o. M. (2018). Vaccination without litigation—addressing religious objections to hospital influenza-vaccination mandates. 378(9), 785-788.
Pana-Cryan, P. R., Asfaw, A., & Rosa, R. (2020). QuickStats: Percentage* of Currently Employed Adults Aged≥ 18 Years Who Reported an Average of≤ 6 Hours of Sleep† per 24-Hour Period, by Employment Category § —National Health Interview Survey, United States, 2008–2009 and 2017–2018¶.
PEW RESEARCH CENTER. (2021). Social Media Use in 2021. from https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/
PTT(2021)。What is Ptt?。取自 https://www.ptt.cc/index.html
Romero, C., Ventura, S. J. I. T. o. S., Man,, & Cybernetics, P. C. (2010). Educational data mining: a review of the state of the art. 40(6), 601-618.
Shah, A. M., Yan, X., Tariq, S., & Khan, S. (2021). Listening to the patient voice: using a sentic computing model to evaluate physicians’ healthcare service quality for strategic planning in hospitals. Quality and Quantity, 55(1), 173-201. doi: 10.1007/s11135-020-00999-3
Taylor, B., Miller, E., Farrington, C., Petropoulos, M.-C., Favot-Mayaud, I., Li, J., & Waight, P. A. J. T. L. (1999). Autism and measles, mumps, and rubella vaccine: no epidemiological evidence for a causal association. 353(9169), 2026-2029.
Terasaki, J., Singh, G., Zhang, W., Wagner, P., & Sharma, G. J. R. m. (2015). Using EMR to improve compliance with clinical practice guidelines for management of stable COPD. 109(11), 1423-1429.
Trethewey, S. P., Patel, N., & Turner, A. M. J. M. (2019). Interventions to increase the rate of influenza and pneumococcal vaccination in patients with chronic obstructive pulmonary disease: a scoping review. 55(6), 277.
VAERS. (2021). About VAERS. from https://vaers.hhs.gov/about.html
VSD. (2020). Vaccine Safety Datalink (VSD). from https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vsd/
Wakefield, A. J., Murch, S. H., Anthony, A., Linnell, J., Casson, D. M., Malik, M., . . . Harvey, P. (1998). RETRACTED: Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children: Elsevier.
website, N. C. o. S. L. J. N. (2020). States with religious and philosophical exemptions from school immunization requirements.
WHO. (2021). 5 myths about the flu vaccine. from https://www.who.int/news-room/spotlight/influenza-are-we-ready/5-myths-about-the-flu-vaccine
Worasathit, R., Wattana, W., Okanurak, K., Songthap, A., Dhitavat, J., & Pitisuttithum, P. (2015). Health education and factors influencing acceptance of and willingness to pay for influenza vaccination among older adults. BMC Geriatr, 15, 136. doi: 10.1186/s12877-015-0137-6
World Health Organization. (2018). Influenza seasonal. from https://www.who.int/health-topics/influenza-seasonal
Yiannakoulias, N., Slavik, C. E., & Chase, M. (2019). Expressions of pro- and anti-vaccine sentiment on YouTube. Vaccine, 37(15), 2057-2064. doi: 10.1016/j.vaccine.2019.03.001
Zhang, J., & Zhao, Y. (2013). A user term visualization analysis based on a social question and answer log. Information Processing & Management, 49(5), 1019-1048. doi: https://doi.org/10.1016/j.ipm.2013.04.003
Zhou, L., Chaovalit, P. J. J. o. t. A. S. f. I. S., & technology. (2008). Ontology‐supported polarity mining. 59(1), 98-110.