簡易檢索 / 詳目顯示

研究生: 彭敏軒
Peng, Min-Hsuan
論文名稱: HfOx 電阻式記憶體的量子化行為
Quantized behavior of HfOx memristor
指導教授: 江佩勳
Jiang, Pei-hsun
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 36
中文關鍵詞: 電阻式記憶體
DOI URL: http://doi.org/10.6345/NTNU202001443
論文種類: 學術論文
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電阻式記憶體屬於非揮發性記憶體,能夠於斷電後依然保存記憶,而因為製程與結構簡單、面積小、操作電壓低、切換速度快、使用壽命長,是目前擁有很高發展潛力的記憶體種類之一。在目前以過渡金屬的氧化物為材料的記憶體為主流,也在研究中取得相當多的成果。
    但若要放在實際應用上,卻還是需要對電阻式記憶體的運作機制有更多的認識。
    而本篇文章將討論工研院所製成之TiN/Ti/HfO2/TiN之雙極性電阻轉換RRAM元件,探究其在物理上的結構與其在物理上的特性,並對樣品在量測時施以不同的量測方式,包含不同的限電流、不同的SET時間與其他能夠探測其電性特性的量法,以此觀察樣品對這些參數的反應,並以此去探究、分析樣品於高電阻態、低電阻態、與兩者切換時的電流傳導機制,最終再利用所獲得、統計出的控制參數,使樣品得以較易發生量子化現象,並觀察與解釋樣品的電流量子化階梯。

    第一章 研究動機與文獻回顧 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 記憶體簡介 2 1.2.1.1 鐵電記憶體 (FeRAM) 2 1.2.1.2 磁阻記憶體 (MRAM) 3 1.2.1.3 相變化記憶體 (PCRAM) 4 1.2.1.4 電阻式記憶體 (RRAM) 5 1.2.2 電阻式記憶體的電阻轉換機制 6 1.2.2.1 電阻的切換行為 6 1.2.2.2 導電絲理論的種類 7 1.2.2.2.1 價電子子遷移機制 (VCM) 7 1.2.2.2.2 金屬離子遷移機制 (ECM) 8 1.2.2.2.3 熱化學機制 (TCM) 9 1.2.3 電流傳導機制 11 1.2.3.1 蕭特基發射 (Schokky emission) 12 1.2.3.2 歐姆 (Ohmic conduction) 14 1.2.3.3 空間電荷限制電流 (space charge limited current) 15 1.2.3.4 穿隧 (Tunneling) 17 1.2.3.5 法蘭克-普爾發射 (Frenkel-Poole emission) 17 第二章 實驗流程 19 2.1 樣品製備 19 2.2 電性量測 20 第三章 結果與討論 23 3.1 SET之好壞 23 3.2 電流的量子現象 24 3.3 改變電流限制 28 3.4 傳輸機制確認 30 3.4.1 電絲斷裂前之主導機制 30 3.4.2 導電絲斷裂後之主導機制 30 第四章 結論 33 參考文獻 34

    1. 陳開煌, 鋯鈦酸鋇鐵電薄膜記憶元件之研究, in 電機工程學系研究所. 2007, 國立中山大學: 高雄市. p. 149.
    2. Evans, J.T. and R. Womack, An experimental 512-bit nonvolatile memory with ferroelectric storage cell. IEEE journal of solid-state circuits, 1988. 23(5): p. 1171-1175.
    3. Prinz, G.A., Magnetoelectronics. Science, 1998. 282(5394): p. 1660-1663.
    4. Stainer, Q., et al., Self-referenced multi-bit thermally assisted magnetic random access memories. Applied Physics Letters, 2014. 105(3): p. 032405.
    5. Lai, S. and T. Lowrey. OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224). 2001. IEEE.
    6. Wong, H.-S.P., et al., Phase change memory. Proceedings of the IEEE, 2010. 98(12): p. 2201-2227.
    7. Sawa, A., Resistive switching in transition metal oxides. Materials today, 2008. 11(6): p. 28-36.
    8. Kwon, D.-H., et al., Atomic structure of conducting nanofilaments in TiO 2 resistive switching memory. Nature nanotechnology, 2010. 5(2): p. 148-153.
    9. Li, Y., et al., Conductance quantization in resistive random access memory. Nanoscale research letters, 2015. 10(1): p. 420.
    10. Niu, G., et al., Geometric conductive filament confinement by nanotips for resistive switching of HfO 2-RRAM devices with high performance. Scientific reports, 2016. 6(1): p. 1-9.
    11. Chen, S.-C., et al., Bipolar resistive switching of chromium oxide for resistive random access memory. Solid-state electronics, 2011. 62(1): p. 40-43.
    12. Dirkmann, S., et al., Filament growth and resistive switching in hafnium oxide memristive devices. ACS applied materials & interfaces, 2018. 10(17): p. 14857-14868.
    13. Yang, Y.C., et al., Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano letters, 2009. 9(4): p. 1636-1643.
    14. Russo, U., et al. Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. in 2007 IEEE International Electron Devices Meeting. 2007. IEEE.
    15. Sze, S.M. and K.K. Ng, Physics of semiconductor devices. 2006: John wiley & sons.
    16. Syu, Y.-E., et al., Atomic-level quantized reaction of HfOx memristor. Applied Physics Letters, 2013. 102(17): p. 172903.
    17. Kim, K.M., et al., Anode-interface localized filamentary mechanism in resistive switching of Ti O 2 thin films. Applied physics letters, 2007. 91(1): p. 012907.
    18. Chiu, F.-C., Electrical characterization and current transportation in metal∕ Dy 2 O 3∕ Si structure. Journal of Applied Physics, 2007. 102(4): p. 044116.
    19. Tseng, Y.H., W.C. Shen, and C.J. Lin, Modeling of electron conduction in contact resistive random access memory devices as random telegraph noise. Journal of applied physics, 2012. 111(7): p. 073701.
    20. Lampert, M.A. and P. Mark, Current injection in solids. 1970.
    21. Jensen, K.L., Electron emission theory and its application: Fowler–Nordheim equation and beyond. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003. 21(4): p. 1528-1544.
    22. Kittel, C., P. McEuen, and P. McEuen, Introduction to solid state physics. Vol. 8. 1996: Wiley New York.
    23. Kim, K.M. and C.S. Hwang, The conical shape filament growth model in unipolar resistance switching of TiO 2 thin film. Applied Physics Letters, 2009. 94(12): p. 122109.
    24. Mehonic, A., et al., Quantum conductance in silicon oxide resistive memory devices. Scientific reports, 2013. 3: p. 2708.
    25. Datta, S., Electronic transport in mesoscopic systems. 1997: Cambridge university press.
    26. Landauer, R., Electrical resistance of disordered one-dimensional lattices. Philosophical magazine, 1970. 21(172): p. 863-867.
    27. Scheer, E., et al., The signature of chemical valence in the electrical conduction through a single-atom contact. Nature, 1998. 394(6689): p. 154-157.
    28. Peacock, P. and J. Robertson, Band offsets and Schottky barrier heights of high dielectric constant oxides. Journal of Applied Physics, 2002. 92(8): p. 4712-4721.

    無法下載圖示 本全文未授權公開
    QR CODE