研究生: |
彭敏軒 Peng, Min-Hsuan |
---|---|
論文名稱: |
HfOx 電阻式記憶體的量子化行為 Quantized behavior of HfOx memristor |
指導教授: |
江佩勳
Jiang, Pei-hsun |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | 電阻式記憶體 |
DOI URL: | http://doi.org/10.6345/NTNU202001443 |
論文種類: | 學術論文 |
相關次數: | 點閱:154 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電阻式記憶體屬於非揮發性記憶體,能夠於斷電後依然保存記憶,而因為製程與結構簡單、面積小、操作電壓低、切換速度快、使用壽命長,是目前擁有很高發展潛力的記憶體種類之一。在目前以過渡金屬的氧化物為材料的記憶體為主流,也在研究中取得相當多的成果。
但若要放在實際應用上,卻還是需要對電阻式記憶體的運作機制有更多的認識。
而本篇文章將討論工研院所製成之TiN/Ti/HfO2/TiN之雙極性電阻轉換RRAM元件,探究其在物理上的結構與其在物理上的特性,並對樣品在量測時施以不同的量測方式,包含不同的限電流、不同的SET時間與其他能夠探測其電性特性的量法,以此觀察樣品對這些參數的反應,並以此去探究、分析樣品於高電阻態、低電阻態、與兩者切換時的電流傳導機制,最終再利用所獲得、統計出的控制參數,使樣品得以較易發生量子化現象,並觀察與解釋樣品的電流量子化階梯。
1. 陳開煌, 鋯鈦酸鋇鐵電薄膜記憶元件之研究, in 電機工程學系研究所. 2007, 國立中山大學: 高雄市. p. 149.
2. Evans, J.T. and R. Womack, An experimental 512-bit nonvolatile memory with ferroelectric storage cell. IEEE journal of solid-state circuits, 1988. 23(5): p. 1171-1175.
3. Prinz, G.A., Magnetoelectronics. Science, 1998. 282(5394): p. 1660-1663.
4. Stainer, Q., et al., Self-referenced multi-bit thermally assisted magnetic random access memories. Applied Physics Letters, 2014. 105(3): p. 032405.
5. Lai, S. and T. Lowrey. OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224). 2001. IEEE.
6. Wong, H.-S.P., et al., Phase change memory. Proceedings of the IEEE, 2010. 98(12): p. 2201-2227.
7. Sawa, A., Resistive switching in transition metal oxides. Materials today, 2008. 11(6): p. 28-36.
8. Kwon, D.-H., et al., Atomic structure of conducting nanofilaments in TiO 2 resistive switching memory. Nature nanotechnology, 2010. 5(2): p. 148-153.
9. Li, Y., et al., Conductance quantization in resistive random access memory. Nanoscale research letters, 2015. 10(1): p. 420.
10. Niu, G., et al., Geometric conductive filament confinement by nanotips for resistive switching of HfO 2-RRAM devices with high performance. Scientific reports, 2016. 6(1): p. 1-9.
11. Chen, S.-C., et al., Bipolar resistive switching of chromium oxide for resistive random access memory. Solid-state electronics, 2011. 62(1): p. 40-43.
12. Dirkmann, S., et al., Filament growth and resistive switching in hafnium oxide memristive devices. ACS applied materials & interfaces, 2018. 10(17): p. 14857-14868.
13. Yang, Y.C., et al., Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano letters, 2009. 9(4): p. 1636-1643.
14. Russo, U., et al. Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. in 2007 IEEE International Electron Devices Meeting. 2007. IEEE.
15. Sze, S.M. and K.K. Ng, Physics of semiconductor devices. 2006: John wiley & sons.
16. Syu, Y.-E., et al., Atomic-level quantized reaction of HfOx memristor. Applied Physics Letters, 2013. 102(17): p. 172903.
17. Kim, K.M., et al., Anode-interface localized filamentary mechanism in resistive switching of Ti O 2 thin films. Applied physics letters, 2007. 91(1): p. 012907.
18. Chiu, F.-C., Electrical characterization and current transportation in metal∕ Dy 2 O 3∕ Si structure. Journal of Applied Physics, 2007. 102(4): p. 044116.
19. Tseng, Y.H., W.C. Shen, and C.J. Lin, Modeling of electron conduction in contact resistive random access memory devices as random telegraph noise. Journal of applied physics, 2012. 111(7): p. 073701.
20. Lampert, M.A. and P. Mark, Current injection in solids. 1970.
21. Jensen, K.L., Electron emission theory and its application: Fowler–Nordheim equation and beyond. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003. 21(4): p. 1528-1544.
22. Kittel, C., P. McEuen, and P. McEuen, Introduction to solid state physics. Vol. 8. 1996: Wiley New York.
23. Kim, K.M. and C.S. Hwang, The conical shape filament growth model in unipolar resistance switching of TiO 2 thin film. Applied Physics Letters, 2009. 94(12): p. 122109.
24. Mehonic, A., et al., Quantum conductance in silicon oxide resistive memory devices. Scientific reports, 2013. 3: p. 2708.
25. Datta, S., Electronic transport in mesoscopic systems. 1997: Cambridge university press.
26. Landauer, R., Electrical resistance of disordered one-dimensional lattices. Philosophical magazine, 1970. 21(172): p. 863-867.
27. Scheer, E., et al., The signature of chemical valence in the electrical conduction through a single-atom contact. Nature, 1998. 394(6689): p. 154-157.
28. Peacock, P. and J. Robertson, Band offsets and Schottky barrier heights of high dielectric constant oxides. Journal of Applied Physics, 2002. 92(8): p. 4712-4721.