簡易檢索 / 詳目顯示

研究生: 張晉嘉
ChinChia Chang
論文名稱: 電動車主動式煞車回充系統之 建模與性能評估
Model Establishment and Performance Assessment for Active Regenerative Braking System of Electric Vehicles
指導教授: 呂有豐
Lue, Yeou-Feng
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 煞車回充最佳化電動車
英文關鍵詞: regenerative braking, optimization, electric vehicle
論文種類: 學術論文
相關次數: 點閱:247下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要在以MATLAB/Simulink研發一可用於電動車的煞車回充系統,以期達到最佳能量回收之目標,本系統包含高功率馬達、機械煞車、鋰電池等部分。將各車輛負載資訊輸入至車輛動態分析模組後,計算出車輛動態資訊並將其送至各系統進行最佳煞車控制,而為進行最佳煞車控制,依現有高功率馬達系統建立主動與被動式煞車模型,並以規則庫控制將煞車回充能量最佳化,分析回充能量結果,最後將最佳煞車控制模型進行驗證及差異修正。主動式煞車定義為最佳化再生煞車後,以機械煞車補足不足之部分;被動式則主要以機械煞車進行煞車,剩餘之部分再根據不足的部分由再生煞車補足。為精確模擬實際行車時之煞車能量,將物理模型燒錄至底盤動力計進行煞車能量測試,實測之煞車能量為13828 kJ,而模擬之煞車能量則為13670 kJ,兩者差距只占實際煞車能量的1.14 %,因此模擬與實測結果十分接近,代表此物理模型可準確模擬實際煞車回充狀況。而本研究為能比較出煞車車速及煞車時間對回充能量的影響,訂出以3種不同車速(30 km/h、60 km/h、90 km/h)在三種不同煞車時間(10秒、15秒、20秒)內進行煞車之行車型態。為模擬車輛在正常行駛狀態之回充能量,本研究選定兩種行車型態(FTP-75與ECE-40)做回充能量測試,模擬結果顯示,當煞車時間越短及以越高車速進行煞車時,能使煞車回充系統回收到較多的能量。由最佳能量回收效益可知,主動式煞車之能量回收為總能量消耗之 4.38 %,被動式則為0.24 %,因此主動式煞車之能量回收效益約為被動式煞車之18.25倍左右。

This thesis mainly evaluates a brake regenerative system in electric vehicles (EVs) by using the Matlab/Simulink software package in order to recovering the optimal brake energy. The system consists of a high-power motor, a mechanical brake, lithium battery etc.. After the vehicle load information is sent to the vehicle dynamics model, the optimal brake control is conducted. We modeled the active and passive braking model based on the high-power motor dynamics. The rule-based control was used for the energy optimization. The regenerative energy was analyzed, and the optimal control model was verified and then modified. The active brake system activates the regenerative brake first, and then the mechanical brake compensates the rest of the energy. The passive energy uses the mechanical brake for the main brake power, while the regenerative brake compensates the rest. To accurately simulate the braking energy while driving, the real brake energy tested on the chassis dynamometer was compared to the model. The test brake energy was 13828 kJ, while the simulated one was 13670 kJ. The difference is only 1.14%, which indicates that the physical model can precisely emulated the vehicle brake operation. In order to comparing the effect of vehicle speed to the brake energy, three initial speeds (30 km/h, 60 km/h, and 90 km/h) and three braking time (10 sec., 20 sec., and 30 sec.) are set to be the braking conditions. Meanwhile, to simulate the normal driving, two driving cycles: FTP-75 and ECE40 are selected for the evaluation of brake regeneration. Simulation results show that with shorter braking time and higher initial speed, the regenerative brake recovers more energy. From the optimal energy recovery, the active brake system can recover 4.38% of total consumed energy, while the passive brake system recovers 0.24%. The active brake system recovers 18.25 times energy than the passive brake system.

中文摘要 I ABSTRACT II 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 文獻探討 3 1.5 研究問題 5 1.6 論文架構 5 第二章 相關理論與分析 7 2.1 整車動態建模 7 2.1.1 大功率電池 10 2.1.2 高功率馬達 11 2.1.3 傳動系統 13 2.1.4 機械煞車系統 13 2.1.5 輪胎動態 14 2.1.6 駕駛者模式與行車型態 15 2.2 主動式回充控制模擬演算法 15 2.3 行車型態煞車回充效益演算 18 第三章 即時模型建立 20 3.1 整車系統架構與操作機制 20 3.2 整車動態與再生煞車模型細部說明 21 3.2.1 驅動馬達及液壓煞車控制 22 3.2.2 馬達驅動及煞車回充效率 25 3.2.3 鋰電池系統 25 3.2.4 最佳能量回收效率模組 28 3.2.5 風阻與滾動阻抗之能量分析模組 29 3.2.6 車輛電池最大回充功率保護模組 30 3.2.7 最佳再生煞車與馬達驅動扭矩控制模組 31 3.2.8 整車動態控制模組 32 3.3 主動式煞車與被動式煞車之規則庫控制 32 第四章 實驗、模擬結果與討論 35 4.1 底盤動力計實測結果 35 4.2 底盤動力計實測總煞車能量比對 36 4.3 定斜率煞車 37 4.4 FTP-75與ECE-40行車型態 43 4.5 最佳回充效益分析 45 第五章 結論與未來工作 47 5.1 結論 47 5.2 未來工作與建議 47 參考文獻 49 符號列表 52

[1] Chan, C. C. 1993. An Overview of Electric Vehicle Technology. Proceedings of the IEEE. 81(9):1202-1213.
[2] 宋德洤、黃永慧。2010。電動車發展趨勢下機電整合與關鍵零組件商機與產業佈局策略。161。新竹縣。工研院產業經濟與趨勢研究中心。
[3] 楊佳怡。2010。電動車電池快速交易系統之可行性研究—射頻識別系統在電動車電池交換上之應用。碩士論文。彰化:建國科技大學自動化工程系暨機電光系統研究所。
[4] 洪德生。2012。電動車產業現況與挑戰。經濟部能源局。台北市。
[5] 黃樑傑。2011。智慧車電領航-電動車跑得更遠。取自: http://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1830
[6] R. C.Duncan. 2000. The Peak of World Oil Production and the Road to the Olduvai Gorge. Available: http://jayhanson.us/.
[7] 詹傑民。2012。含電動車負載之配電系統運轉規劃。碩士論文。高雄:國立中山大學電機工程學系。
[8] 陳鉉仁。2006。再生煞車之設計與分析。碩士論文。台北:國立台北科技大學車輛工程學系。
[9] 劉力榮。2009。具剎車回充與電壓控制之雙向直流/直流轉換器於電動車之研製。碩士論文。雲林:國立虎尾科技大學航空與電子科技研究所。
[10] Cikanek, S.R., and Bailey, K. E. 2002. Regenerative Braking System For A Hybrid Electric Vehicle. Proceedings of American Control Conference. 4: 3129 – 3134.
[11] Dixon, J.W., and Ortuzar, M.E. 2002. Ultracapacitors + DC-DC converters in regenerative braking system. IEEE Aerospace and Electronic Systems Magazine. 17: 16–21.
[12] Gao H., Gao Y., and Ehsani, M. 2001. A neural network based SRM drive control strategy for regenerative braking in EV and HEV. IEEE Int.Electric Machines and Drives Conference: 571 – 575
[13] Wicks, F., and Donnelly, K. 1997. Modeling regenerative braking and storage for vehicles. Intersociety Energy Conversion Engineering Conference. 3: 2030-2035.
[14] Cao, B., Bai, Z., and Zhang, W. 2005. Research on control for regenerative braking of electric Vehicle. Proceedings of IEEE International Conference on Vehicular Electronics and Safety: 14-16.
[15] Bailey, K.E. 1998. ABS/Traction Assist regenerative Braking Application of Hardware-in the-Loop. Proceedings of the 1998 American Control Conference. 1: 503–507.
[16] Lee, J., and Nelson, D.J. 2005. Rotating Inertia Impact on Propulsion and Regenerative Braking for Electric Motor Driven Vehicles. 2005 IEEE Conference, Vehicle Power and Propulsion.
[17] Zhang, J., Song, B., and Niu, X. 2008. Optimization of parallel regenerative braking control strategy. IEEE. Vehicle Power and Propulsion Conference:1-4.
[18] Bird, B.M., and Mehta, P. 1972. Regenerative braking in slip-power-recovery systems. Proceedings of the Institution of Electrical Engineers. 119: 1343–1344.
[19] Peng, D., Zhang, Y., Yin, C. L., and Zhang, J. W. 2008. Combined control of a regenerative braking and antilock braking system for hybrid electric vehicles. International Journal of Automotive Technology. 9(6): 749-757.
[20] Mikami, T., and Taga, Y. 1998. Apparatus for controlling electric generator of hybrid drive vehicle to control regenerative brake depending upon selected degree of drive source brake application. U.S. Patent No. US5839533A.
[21] Ito, M., Kawahata, F., Nakamura, K., Ohkubo, M., Otomo, A., and Sakai, A. 1999. Brake apparatus for an electric vehicle to maximize regenerative energy. U.S. Patent No. US5895100A
[22] Crombez., D.S., and Napier, S.L. 2004. Combined regenerative and friction braking system for a vehicle. U.S. Patent No. US006687593B1.
[23] Asanuma, N., Ohno, A, and Toyota, H. 1994. Electric vehicle regenerative and friction braking control system. U.S. Patent No. US005322352A.
[24] Ibaraki, R., and Taga, Y. 1999. Regenerative brake controller for controlling value of regenerative braking torque simulating engine braking torque. U.S. Patent No. US5915801A.
[25] Fox, A. M., and Morton, J. 1989. Regenerative braking systems. European Patent No. EP0280478A3.
[26] Davis, R.I. 1994 . Adaptive controller for regenerative and friction braking system. European Patent No. EP0361708B1.
[27] Tanaka, K., Shima, T. 1994. Regenerative braking system for car. European Patent No. EP0366088B1.
[28] Tsuchiya, Y., and Kurabayashi, K. 1995. Energy recovery system for motor vehicle. European Patent No. EP0418995B1.
[29] 陳志鏗、謝森雄、羅民芳。2007。線傳煞車系統之車輛動態穩定控制系統之研究與實驗。中國機械工程學會第二十四屆全國學術研討會論文集。B1:15。
[30] Sato, S., and Kawamura, A. 2002. A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery. Proceedings of the Power Conversion Conference. 2: 565 – 570.
[31] Seki, H., Ishihara, K. and Tadakuma, S. 2009. Novel Regenerative Braking Control of Electric Power-Assisted Wheelchair for Safety Downhill Road Driving. Industrial Electronics. 56:1393 - 1400.

下載圖示
QR CODE