研究生: |
曾玉君 Yu-Chung Tseng |
---|---|
論文名稱: |
La(2-x)/3NaxMg1/2W1/2O3微波介電材料之拉曼光譜與延伸X光吸收精細結構研究 Raman Spectroscopy and Extended X-ray absorption fine structure Characterization of La(2-x)/3NaxMg1/2W1/2O3 Microwave Ceramics |
指導教授: |
賈至達
Chia, Chih-Ta |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 鑭鎂鎢晶體 、拉曼光譜 、延伸X光吸收精細結構 、陶瓷材料 、鈣鈦礦結構 |
英文關鍵詞: | LMW, Raman scattering, EXAFS, ceramic, perovskite structure |
論文種類: | 學術論文 |
相關次數: | 點閱:230 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用三種光學方法:拉曼散射、X光繞射和延伸X光精細結構吸收譜,測量結構為A(B’1/2B”1/2)O3之鈣鈦礦陶瓷La(2-x)/3Nax(Mg1/2W1/2)O3的氧八面體結構,以探討缺陷結構晶體之氧八面體與其微波性質的關聯性。此系列樣品共有六個,x代表鈉原子的濃度,從0、0.1、0.2、0.3、0.4到0.5。隨著鈉原子濃度上升,則晶格空缺比例減少,樣品之晶體結構從斜方結構轉變為單斜結構,介電常數與品質因子Qxf值均為逐漸下降之趨勢。從X光吸收譜可以明確地探測出以鎢原子為中心周圍六顆氧原子的距離與分佈,當鈉原子摻雜濃度增多,造成鎢與氧原子的平均鍵長變小,證實了氧八面體的扭曲造成其體積壓縮,使得介電常數下降。拉曼光譜實驗顯示專屬氧八面體伸縮振動的A1g(O)振動模具有聲子頻率紅移的現象,表示氧八面體周圍A-site密度隨著質量遠小於鑭原子的鈉原子摻雜逐漸變小,使得氧八面體伸縮振動變得輕易,因此氧八面體體積雖然為壓縮,但是整個八面體網路結構卻是變鬆散,造成A1g(O)聲子頻率位移產生紅移。由於缺陷結構的品質因子與晶體結構之有序性及對稱性成正相關,將聲子半高寬乘上鎢與氧原子距離之標準差值,可得與Qxf值成反比之關係。從拉曼實驗及X光吸收譜實驗分析顯示本文樣品的微波介電特性與氧八面體微觀結構直接相關。
The structure and microwave dielectric properties of 1:1 ordered La(2-x)/3Nax(Mg1/2W1/2)O3 (x is Na+ ion concentration, from 0 to 0.5) ceramics were investigated by the X-ray diffraction, Raman scattering, and Extended X-ray Absorption Fine Structure measurement. XRD phase analysis shows that all La-substituted samples exhibit single phase and the crystal symmetry change from orthorhombic to monoclinic phase. The Q×f value and the dielectric permittivity decrease as x increase, although the estimated concentration of A-site vacancies decreases with increasing x. EXAFS analysis indicates that the W-O average bond length decreases with the larger addition of Na+ ion. Therefore the volume of oxygen-octahedron is decreasing due to the slight distortion of the oxygen octahedral influenced by Na+ ion-doped. This result is consistent with the decrease of dielectric permittivity. The strongest peak near 850 cm-1 in Raman spectra is A1g(O) mode which is in the stretching mode of oxygen octahedron. The reduce of A-site density for small atomic weight of Na+ ion-doped results in softening of WO6 stretching, as A1g(O) phonon undergoes redshifted. Such behavior indicates that the structure of three-dimensional oxygen-octahedral framework become relaxed for high Na doped sample, although the volume of oxygen-octahedron is decreasing. The microwave Qxf value is strongly correlated with the order of A/B-site atom and the symmetry of crystalline structure. Hence, the microwave performance of doped 1:1 ordered ceramics reflects the changes in the oxygen octahedral structure.
[1]R. D. Richtmyer, “Dielectric Resonators”, J. Appl. Phys, 10, 391,(1939).
[2]S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonator”, IEEE Trans. On MTT, MTT-16, pp217-218, (1968).
[3]Hiroshi Tamura, “Lattice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure”, Jpn. J. Appl. Phys, (1986), 25,787.
[4]I. G. Siny, R. S. Katiyar, “Cation arrangement in the complex perovskites and vibration spectra”, J. Raman spectroscopy, (1998), 29, 385.
[5]G. Lucazeau, L. Avello, “Raman spectroscopy in solid state physics and materical sciene”, Theory Techniques and applications, (1995), 23, 301.
[6]A. J. Moulson and J. M. Herbert, Electroceramics, Chapman and Hall, New York, (1990).
[7]A. J. Moulson and J. M. Herbert, Electroceramics, Chapman and Hall, New York, (1990).
[1]O. Muller, R. Roy, “The Major Ternary Structural Families”, Springer, New York (1974).
[2]F. Donald Bloss, Crystallography and Crystal Chemistry, pp253.
[3]R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides”, Acta Cryst., A32, 75, (1976), ,.
[4]A. M. Glazer, “The Classification of Tilted Octahedra in Perovskite”, Acta Cryst., B28, pp3384-3392, (1972).
[5]A. M. Glazer, “Simple Ways of Determining Perovskite Structure”, Acta Cryst., A31, pp756-762, (1975).
[6]I. M. Reaney, E. L. Colla, and N. Setter, “Dielectric and Structural Characteristics of Ba and Sr-based Complex Perovskite as a Function of Tolerance Factor”, Jpn. J. Appl. Phys., 33, pp3984-3990, (1994).
[7]孫千瑛, “鹼金屬離子對薄膜電池氧化物缺陷電解質結構之影響”, 國立成功大學碩士論文, (2002).
[8]A. J. Moulson and J. M. Herbert, Electroceramics, Chapman and Hall, New York, (1990).
[9]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., John Wiley and Sons, New York (1976).
[10]E. Nyfors, “Cylindrical microwave resonator Sensors for measuring materials under flow”, PhD. thesis, Department of Electrical and Communications Engineering, Helsinki University of Technology, Finland, (2000).
[11]http://www.kosi.com/raman/resources/tutorial/
[12]戴學斌, “利用拉曼散射技術研究鐵電材料之相變化、摻雜效應與薄膜之結晶化”, 國立成功大學博士論文, (2003).
[13]J.J. Bian∗, K. Yan, J. Ji, “Structure and microwave dielectric properties of La(2−x)/3Nax(Mg1/2W1/2)O3”, Journal of the European Ceramic Society, 26, pp1957-1960, (2006).
[14]J. J. Rehr and R. C. Albers, Rev. Mod. Phys., Vol. 72, No. 3, pp621, (2000).
[15]D. C. Koningsberger and R. Prins, A Wiley-Interscience Publication.
[16]Shelly Kelly, “Basics of EXAFS data analysis”, Argonne National Laboratory, Argonne, IL.
[17]D. C. Koningsberger, R. Prins, “X-ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES”, A Wiley-Interscience Publication.
[18]Lipkin, J. Harry, “Phase uncertainty and loss of interference in a simple model for mesoscopic Aharonov-Bohm experiments”, Phys. Rev. A, 42, 49, (1990).
[19]Stern, A. Edward, “Theory of the Extended X-ray-Absorption Fine Structure”, Phys. Rev. B, 10, pp3027, (1974).
[20]M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern and Y. Yacoby, “Analysis of multiple-scattering XAFS data using theoretical standards”, Physica B, 208, 154, (1995).
[21]B. Ravel, “Practical introduction to multiple scattering theory”, J. Alloys and Compounds, 401, 118, (2005).
[22]Edward A. Stern, Phys. Rev. B ,10, pp3027, (1974).
[1]C. T. Chia, P. J. Chang, M. Y. Chen, I. N. Lin, H. Ikawa, L. J. Lin, “Oxygen-octahedral phonon properties of xBaTiO3+(1-x)Ba(Mg1/3Ta2/3) and xCa(Sc1/2Nd1/2)O3+(1-x)Ba(Sc1/2Nb1/2)O3 microwave ceramics”, J. Appl. Phys., 101, 084155, (2007)
[2]H. P. Rooksby, E. A. D. White, S. A. Langston, J. Am. Ceram. Soc., 48, 447, (1965).
[3]P. N. Iyer, A. J. Smith, Acta. Crystallogr., 23, 740, (1967).
[4]M. Abe, K. Uchion, Mater. Res. Bull., 9, 147, (1974).
[5]Y. Torii, “Synthesis And Superstructure Of La2/3(Mg1/2W1/2)O3”, Chemistry Letters, pp1215-1218, (1979).
[6]T. Sekiya, T. Yamamoto, Y. Torii, “Cation Ordering in (NaLa)(MgW)O6 with the Perovskite Structure.”, Bull. Chm. Soc. Jpn., 57, pp1859-1862, (1984).
[7]M. A. Arillo, J. Gbmez, M. L. Lbpez* C. Pica, M. L. Veiga, “Structural and electrical characterization of new materials with perovskite structure”, Solid State Ionics, 95, pp241-248, (1997).
[8]N. Hiramatsu, T. Mishima, D.A. Sagala, “Structural study of complex perovskite (Na,La)(Mg,W)O3”, Ceramic Transactions, 13104, pp79-85 (2000).
[9]D. D. Khalyavin, A. M. R. Senos, P. Q. Mantas, “Crystal structure of La4Mg3W3O18 layered oxide”, J. Phys. Condens. Matter ,17, pp2585–2595, (2005).
[10]M. Takata, K. Kageyama, J. Am. Ceram. Soc., 72, pp1955–1959, (1989).
[11]D. D. Khalyavin, J. Han, A.M.R. Senos, P.Q. Mantas, J. Mater. Res., 18, pp2600–2607, (2003).
[12]F. Zhao, Z.X. Yue, Z.L. Gui, L.T. Li, Jpn. J. Appl. Phys., 44, pp8066–8071, (2005).
[1]J.J. Bian∗, K. Yan, J. Ji, “Structure and microwave dielectric properties of La(2−x)/3Nax(Mg1/2W1/2)O3”, Journal of the European Ceramic Society, 26, pp.1957-1960, (2006).
[2]Y. Torii, “Synthesis And Superstructure Of La2/3(Mg1/2W1/2)O3”, Chemistry Letters, pp.1215-1218, (1979).
[3]D. D. Khalyavin, A. M. R. Senos, P. Q. Mantas, “Crystal structure of La4Mg3W3O18 layered oxide”, J. Phys. Condens. Matter, 17, pp.2585–2595, (2005).
[4]T. Sekiya, T. Yamamoto, Y. Torii, “Cation Ordering in (NaLa)(MgW)O6 with the Perovskite Structure.”, Bull. Chm. Soc. Jpn., 57, pp.1859-1862, (1984).
[5]M. A. Arillo, J. Gbmez, M. L. Lbpez* C. Pica, M. L. Veiga, “Structural and electrical characterization of new materials with perovskite structure”, Solid State Ionics, 95, pp.241-248, (1997).
[6]N. Hiramatsu, T. Mishima, D.A. Sagala, “Structural study of complex perovskite (Na,La)(Mg,W)O3”, Ceramic Transactions, 13 104, pp.79-85, (2000).
[7]Y. Torii, T. Sekiya, “Crystallographic and dielectric properties of the Pb2(MgW)O6–La1.33(MgW)O6 solid solution. Mater. Res. Bull.,16, pp.1153–1158, (1981).
[8]I. D. Brown, R. D. Shannon, Acta Cryst., A29, pp.266-283, (1973).
[9]R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distancesin Halides and Chaleogenides.”, Acta Cryst., A32, 751, (1976).
[1]G. Siny, R. S. Katiyar, Cation arrangement in the complex perovskites and vibration spectra, J. Raman spectroscopy, 29, pp385-390, (1998).
[2]I. G. Siny and T. A. Smirnova, Fiz . Tverd . Tela, 30, pp832, (1989) ; Sov. Phys. Solid State, 30, pp.473, (1988) ; Ferroelectrics, 90, pp191, (1989).
[3]I. Siny, C. Boulesteix, Ferroelectrics, 96, pp119, (1989).
[4]D. Rout, V. Subramanian, K. Hariharan, and V. R. K. Murthy, V. Sivasubramanian, “Raman spectroscopic study of (Pb1-xBax)(Yb1/2Ta1/2)O3 ceramics”, J. Appl. Phys, 98, 103503, (2005).
[5]S. A. Prosandeev, U. Waghmare, I. Levin, J. Maslar, “First-order Raman spectra of AB’1/2B’’1/2O3 double perovskites”, Phy. Rev., B71, pp214-307, (2005).
[6]Y. C. Chen, H. F. Huang, H. L. Lin, C. T. Chia, I. N. Lin, “Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3O3–(1-x) Ba(Mg1/3Nb2/3)O3 ceramics: II. Infrared spectroscopy”, J. Appl. Phys., 94, pp3365-3369, (2003).
[7]C. T. Chia, Y. C. Chen, and H. F. Cheng, “Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3O3–(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy”, J. Appl. Phys., 94, pp3360-3364, (2003).
[8]R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distancesin Halides and Chaleogenides”, Acta Cryst., A32, pp751, (1976).
[9]Anderson Dias, L. Abdul Khalam, Mailadil T. Sebastian, Carlos William A. Paschoal,Roberto L. Moreira, “Chemical Substitution in Ba(RE1/2Nb1/2)O3 (RE= La, Nd, Sm, Gd,Tb, and Y) Microwave Ceramics and Its Influence on the Crystal Structure and Phonon Modes.”, Chem. Mater, 18, pp214-220, ( 2006).
[10]I. G. Siny, R. S. Katiyar and S. G. Lushnikov, in Proceedings of the XVth International Conference on Raman Spectroscopy , edited by S. A. Asher, p. 1002 Wiley, Chichester (1996).