簡易檢索 / 詳目顯示

研究生: 簡思環
論文名稱: 十六族元素 (硒或碲) 混合六族元素 (鉻、鉬、鎢) 或銅 (I) 配位含氮異環碳烯 (NHC) 配位基之團簇化合物的合成、物性及化性探討
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 246
中文關鍵詞:
英文關鍵詞: Cr, Mo, W, Te, Se, Fe
論文種類: 學術論文
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1. Te/M/CO (M = Cr、Mo 及 W) 系統之研究
    以不同莫耳比例之 TeO2、Cr(CO)6 和 Et4NBr 於 1.5 M 鹼性 MeOH 溶液中加熱迴流 (superheating),可分別得化合物 [Te2Cr4(CO)18]2─ (1) 和 [Te7Cr6(CO)20]4─ (2)。反之,若此一鍋化合成於 1 M 鹼性 MeOH/MeCN 混合溶液及 45 oC 下反應,則形成化合物 [Te7Cr4(CO)14]4─ (3)。當改變主族來源,進一步混合 Te powder、M(CO)6 (M = Mo 和 W) 及Et4NBr 於 1 M 或 2 M 鹼性 MeOH/MeCN 混合溶液及 45 oC 下反應,亦獲得一系列新穎
    金屬團簇物 [Te7Mo6(CO)20]4─ (4)、[Te6Mo6(CO)15]4─ (5)、[Te4W4(CO)14]4─ (6) 及 [Te6W5(CO)12]4─ (7)。此外,化合物 1 和 6 可藉由加入 TeO2/KOH 或置於加熱環境下,可分別擴核形成化合物 2 和 7。而化合物 4 與 Mo(CO)6/KOH 反應,則降解形成化合物 5。有趣的是,當化合物 7 與 I2 反應,可生成等電子結構 [Te6W5(CO)12]2─ (8)。其化合物之生成、結構轉換及相關性質亦藉由理論計算進一步驗證。
    2. Se/Fe/CO/Cu/NHC 系統之研究
    以一鍋化方式混合加入團簇物 [SeFe3(CO)9Cu2(MeCN)2] (1)、KOBut 和一系列咪唑啉鹽類 (1,3-dimethylimidazolium iodide (Me2Im•HI)、1,3-dimethylbenzimidazolium iodide (Me2BenzIm•HI)、1,3-diisopropylbenzimidazolium iodide (iPr2BenzIm•HI) 和 4,5-dichloro-1,3-dimethylimdazolium iodide (4,5-Cl2Me2Im•HI) 反應,分別得到化合物 [SeFe3(CO)9Cu2(Me2Im)2] (2)、[SeFe3(CO)9Cu2(Me2BenzIm)2] (3)、[SeFe3(CO)9Cu2(iPr2BenzIm)2] (4) 及 [SeFe3(CO)9Cu2(4,5-Cl2Me2Im)2] (5)。此外,於氧氣環境下化合物 1─5 可進行芳香環硼酸之耦合反應。其化合物之生成、催化反應及相關性質亦藉由理論計算進一步驗證。

    Abstract
    1. Te/M/CO (M = Cr, Mo, W) System
    The reactions of appropriate ratios of TeO2, Cr(CO)6, and Et4NBr in superheated 1.5 M KOH/MeOH solutions led to the formation of clusters [Te2Cr4(CO)18]4─ (1) and [Te7Cr6(CO)20]4─ (2). Otherwise, a similar one-pot reaction in 1 M KOH/MeOH/MeCN solutions at 45 oC led to the formaton of cluster [Te7Cr4(CO)14]4─ (3). When the chalcogen’s source was changed to Te powder, a series of novel cluster anions [Te7Mo6(CO)20]4─ (4), [Te6Mo6(CO)15]4─ (5), [Te4W4(CO)14]4─ (6), and [Te6W5(CO)12]4─ (7) were obtained directly from the reactions of Te powder with M(CO)6/Et4NBr (M = Mo and W) in 1M or 2 M KOH/MeOH/MeCN solutions at 45 oC. When clusters 1 and 6 were treated with TeO2/KOH or in the heating conditions, the larger clusters 2 and 7 were produced. Cluster 4 could also be reconverted to cluster 5 by the addition of Mo(CO)6/KOH/MeOH/MeCN solutions. More interesting, when cluster 7 was reacted with I2, the isoelectronic cluster [Te6W5(CO)12]2─ (8) was formed. Furthermore, the nature, structural transformation, and electrochemical property of these resultant clusters are discussed and elucidated by DFT calculations.
    2. Se/Fe/CO/Cu/NHC System
    The one-pot reaction of cluster [SeFe(CO)9Cu2(MeCN)2] (1) with KOBut/imidazolium salts (1,3-dimethylimidazolium iodide (Me2Im•HI), 1,3-dimethylbenzimidazolium iodide (Me2BenzIm•HI), 1,3-diisopropylbenzimidazolium iodide (iPr2BenzIm•HI), and 4,5-dichloro-1,3-dimethylimidazolium iodide), a series of novel clusters [SeFe3(CO)9Cu2(Me2Im)2] (2), [SeFe3(CO)9Cu2(Me2BenzIm)2] (3), [SeFe3(CO)9Cu2(iPr2BenzIm)2] (4), [SeFe3(CO)9Cu2(4,5-dichloro-1,3-dimethylimidazolin-2-ylidene)2] (5) were formed, respectively. In addition, clusters 1─5 were able to mediate the dimerization of arylboronic acid under oxygen atmosphere. Furthermore, the nature, the catalysis, and electrochemical property of these resultant clusters are diacussed and elucidated by DFT calculations.

    1.1 摘要 1 1.2 背景 3 1.3 結果與討論 4 1.3-1 [Et4N]2[Te2Cr4(CO)18] ([Et4N]2[1]) 與 [Et4N]4[Te7Cr6(CO)20] ([Et4N]4[2]) 之合成探討 4 1.3-2 [Et4N]2[Te2Cr4(CO)18] ([Et4N]2[1]) 轉換至 [Et4N]4[Te7Cr6(CO)20] ([Et4N]4[2]) 5 1.3-3 [Et4N]4[Te7Cr4(CO)14] ([Et4N]4[3])、[Et4N]2[TeCr2(CO)10] 及 [Et4N]4[Te2Cr3(CO)10] 之合成探討 6 1.3-4 [Et4N]4[Te7Mo6(CO)20] ([Et4N]4[4]) 與 [Et4N]4[Te6Mo6(CO)15] ([Et4N]4[5]) 之合成探討 8 1.3-5 [Et4N]4[Te7Mo6(CO)20] ([Et4N]4[4]) 轉換至 [Et4N]4[Te6Mo6(CO)15] ([Et4N]4[5]) 8 1.3-6 [Et4N]4[Te4W4(CO)14] ([Et4N]4[6]) 與 [Et4N]4[Te6W5(CO)12] ([Et4N]4[7]) 之合成探討 10 1.3-8 [Et4N]4[Te4W4(CO)14] ([Et4N]4[6]) 轉換至 [Et4N]4[Te6W5(CO)12] ([Et4N]4[7]) 10 1.3-9 [Et4N]2[Te6W5(CO)12] ([Et4N]2[8]) 之合成探討 ([Et4N]4[Te6W5(CO)12] ([Et4N]4[7]) 與 I2 反應) 11 1.4 化合物2—8 結構比較 13 1.4-1 [Et4N]4[Te7Cr6(CO)20] ([Et4N]4[2])、[Et4N]4[Te7Mo6(CO)20] ([Et4N]4[4])之結構解析 13 1.4-2 [Et4N]4[Te7Cr4(CO)14] ([Et4N]4[3]) 之結構解析 16 1.4-3 [Et4N]4[Te6Mo6(CO)15] ([Et4N]4[5]) 之結構解析 18 1.4-4 [Et4N]4[Te4W4(CO)14] ([Et4N]4[6]) 之結構解析 19 1.4-5 [Et4N]4[Te6W5(CO)12] ([Et4N]4[7]) 之結構解析 22 1.4-6 [Et4N]2[Te6W5(CO)12] ([Et4N]4[8]) 之結構解析 23 1.5 電化學討論 26 1.5-1 化合物 [Et4N]4[Te7Cr6(CO)20] ([Et4N]4[2]) 和 [Et4N]4[Te7Cr4(CO)14] ([Et4N]4[3]) 之電化學探討 27 1.5-2 化合物 [Et4N]4[Te7Cr6(CO)20] ([Et4N]4[2]) 和 [Et4N]4[Te7Mo6(CO)20] ([Et4N]4[4]) 之電化學探討 28 1.5-3 化合物 [Et4N]4[Te7Mo6(CO)20] ([Et4N]4[4]) 和 [Et4N]4[Te6Mo6(CO)15] ([Et4N]4[5]) 之電化學探討 29 1.5-4 化合物 [Et4N]4[Te4W4(CO)14] ([Et4N]4[6]) 和 [Et4N]4[Te6W5(CO)12] ([Et4N]4[7]) 之電化學探討 30 1.5-5 化合物 [Et4N]4[Te6W5(CO)12] ([Et4N]4[7]) 和 [Et4N]2[Te6W5(CO)12] ([Et4N]2[8]) 之電化學探討 31 1.6 光學反射光譜探討 33 1.7 電子吸收光譜研究探討 35 1.8 理論計算 39 1.8-1 [Te7Cr6(CO)20] 4- (2) 之理論計算 40 1.8-2 [Te7Cr4(CO)14] 4- (3) 之理論計算 41 1.8-3 [Te7Mo6(CO)20] 4- (4) 之理論計算 42 1.8-4 [Te6Mo6(CO)15] 4- (5) 之理論計算 43 1.8-5 [Te4W4(CO)14] 4- (6) 之理論計算 44 1.8-6 [Te6W5(CO)12] 4- (7) 之理論計算 45 1.8-7 [Te6W5(CO)12] 2- (8) 之理論計算 46 1.8-8 [Te7Mo6(CO)20] 4- (4)、[Te6Mo6(CO)15] 4- (5) 、[Te6W5(CO)12] 4- (7)、[Te6W5(CO)12] 2- (8) 之電子親和力結果分析 47 1.9結論 48 1.10 實驗部分 49 1.10-1 [Et4N]2[TeCr2(CO)10] 之合成 50 1.10-2 [Et4N]2[Te2Cr3(CO)10] 之合成 50 1.10-3 [Et4N]2[Te2Cr4(CO)18] ([Et4N]2[1]) 之合成 51 1.10-4 [Et4N]4[Te7Cr6(CO)20]•MeCN ([Et4N]4[2]•MeCN) 之合成 51 1.10-5 [Et4N]4[Te7Cr4(CO)14] ([Et4N]4[3]) 之合成 52 1.10-6 [Et4N]4[Te7Mo6(CO)20]•MeCN ([Et4N]4[4]•MeCN) 之合成 52 1.10-7 [Et4N]4[Te6Mo6(CO)15] ([Et4N]4[5]) 之合成 53 1.10-8 [Et4N]4[Te4W4(CO)14] ([Et4N]4[6]) 之合成 54 1.10-9 [Et4N]4[Te6W5(CO)12] ([Et4N]4[7]) 之合成 55 1.10-10 [Et4N]2[Te6W5(CO)12] ([Et4N]2[8]) 之合成 ([Et4N]4[8] 與 I2 反應) 56 1.10-11 [Et4N]2[1] 轉換至 [Et4N]4[2]•MeCN 57 1.10-12 [Et4N]4[4] 轉換至 [Et4N]4[5] 57 1.10-13 [Et4N]4[6] 轉換至 [Et4N]4[7] 58 1.10-14 化合物 [Et4N]4[Te7Cr6(CO)20]•MeCN ([Et4N]4[2]•MeCN)、[Et4N]4[Te7Cr4(CO)14] ([Et4N]4[3])、[Et4N]4[Te7Mo6(CO)20]•MeCN ([Et4N]4[4]•MeCN)、[Et4N]4[Te6Mo6(CO)15] ([Et4N]4[5])、[Et4N]4[Te4W4(CO)14] ([Et4N]4[6])、[Et4N]4[Te6W5(CO)15] ([Et4N]4[7])、[Et4N]2[Te6W5(CO)15] ([Et4N]2[8]) 之 X-ray 結構解析 59 1.10-15 電化學分析 60 1.10-16 電子吸收光譜 61 1.10-15 磁性分析 61 1.10 參考文獻 66 2.1 摘要 143 2.2 前言 144 2.3 實驗目的 146 2.4 結果與討論 147 2.4-1 [SeFe3(CO)9Cu2(MeCN)2] (1) 之合成探討 147 2.4-2 [SeFe3(CO)9Cu2(Me2Im)2] (2) 、[SeFe3(CO)9Cu2(Me2BenzIm)2] (3)、[SeFe3(CO)9Cu2(iPr2BenzIm)2] (4) 及 [SeFe3(CO)9Cu2(4,5-Cl2Me2Im)2] (5) 之合成探討 147 2.5 化合物 1─5 之 X-ray 結構比較及 NMR 光譜分析 149 2.6 電化學分析 154 2.7 電子吸收光譜 158 2.7 催化反應 160 2.8結論 166 2.9實驗部分 167 2.9-1 SeFe3(CO)9Cu2(MeCN)2 (1) 之合成 168 2.9-2 SeFe3(CO)9Cu2(1,3-dimethyl-imidazolin-2-ylidene)2 (2) 之合成 168 2.9-3 SeFe3(CO)9Cu2(1,3-dimethyl-benzimidazolin-2-ylidene)2 (3) 之合成 169 2.9-4 SeFe3(CO)9Cu2(1,3-isopropyl-benzimidazolin-2-ylidene)2 (4) 之合成 170 2.9-5 SeFe3(CO)9Cu2(4,5-dichloro-1,3-dimethyl-imidazolin-2-ylindene)2 (5) 之合成 171 2.9-6 SeFe3(CO)9Cu2(MeCN)2 (1) 之苯基硼酸同耦合 (Homocoupling) 催化實驗 172 2.9-7 SeFe3(CO)9Cu2(1,3-dimethyl-imidazolin-2-ylidene)2 (2) 之苯基硼酸同耦合 (Homocoupling) 催化實驗 173 2.9-8 SeFe3(CO)9Cu2(1,3-dimethyl-benzimidazolin-2-ylidene)2 (3) 之苯基硼酸同耦合 (Homocoupling) 催化實驗 173 2.9-9 SeFe3(CO)9Cu2(1,3-isopropyl-benzimidazolin-2-ylidene)2 (4) 之苯基硼酸同耦合 (Homocoupling) 催化實驗 174 2.9-10 SeFe3(CO)9Cu2(4,5-dichloro-1,3-dimethyl-imidazolin-2-ylidene)2 (5) 之苯基硼酸同耦合 (Homocoupling) 催化實驗 175 2.9-11 化合物 3—5 之 X-ray 結構解析 175 2.9-12 電化學分析 176 2.9-13 理論計算 176 2.10 參考文獻 178 A.1實驗部分 215 A.1-1 [PPh4][SeBiFe2(CO)6] ([PPh4][1a]) 之合成 216 A.1-2 [PPh4][TeFe3(CO)9Bi] ([Et4N][1b]) 之合成 216 A.1-3 [PPh4][SeBiFe2(CO)6] ([PPh4][2]) 之合成 217 A.1-4 [PPh4]2[Se5Fe4(CO)12] ([PPh4][3]) 之合成 217 A.1-5 [PPh4][Te3Fe4(CO)12Bi] ([PPh4][4]) 之合成 218 A.1-6 [PPh4][Te3Fe3(CO)9BiCl] ([PPh4][5]) 之合成 218 A.1-7 化合物 3—5 之 X-ray 結構解析 219 A.2參考文獻 221

    (1) (a) Kolis, J. W.; Roof, L. C.; Pennington, W. T. Inorg. Chem. 1992, 31, 2056─2064. (b) Roof, L. C. ;Kolis, J. W. Chem. Rev. 1993, 93, 1037─1080. (c) 詹莉芬,國立臺灣師範大學碩士論文,1997。
    (2) Das, B. K.;Kanatzide, M. G. Polyhedron. 2000, 19, 1995─2002.
    (3) Shieh, M.; Ho, L.-F.; Guo, Y.-W.; Lin, S.-F.; Lin, Y.-C.; Peng, S.-M.; Liu, Y.-H., Organometallics 2003, 22, 5020─5026.
    (4) 林淑芬,國立臺灣師範大學碩士論文,2001。
    (5) Gordon, A. J.; The Chemist’s Compasion.; Wiely: New York, 1972, p445.
    (6) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiely: 1986.
    (7) 謝明惠,朱晏頤,未發表之結果。
    (8) North A. C. T.;Phillips, D. C.;Mathews, F. S. Acta Crystallogr. 1968, A24, 351─359.
    (9) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112─122.
    (10) (a) Kotüm, G. Reflectance Spectroscopy, Springer-Verlag, New York, 1969. (b) Wendlandt, W. W., Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York, 1966.
    (11) Cao, G.; Rabenberg, L. K.; Nunn, C. M.; Mallouk, T. E. Chem. Mater. 1991, 3, 149─156.
    (12) Boudreaux, E. A.; Mulay, L. N. Theory and Application of Molecular Paramagnetism;Wiley: New Yourk, 1976.
    (13) 謝明惠、朱晏頤,未發表結果。
    (14) (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155—2160; (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173—9177; (c) Becke, A. D., J. Chem. Phys. 1993, 98, 5648—5652.
    (15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    (16) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6150—6170.
    (17) O’Boyle, N. J. Comput. Chem. 2008, 29, 839—845.
    (18) Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.
    (19) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066—4073; (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735—746.
    (20) Wiberg, K. B. Tetrahedron 1968, 24, 1083—1096.
    (21) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899—926.
    (1) (a) Boehme, C.; Frenking, G., Organometallics 1998, 17, 5801─5809; (b) Lee, M.-T.; Hu, C.-H., Organometallics 2004, 23, 976─983.
    (2) Öfele, K., J. Organomet. Chem. 1968, 12, P42─P43.
    (3) (a) Cooke, C. E.; Jennings, M. C.; Katz, M. J.; Pomeroy, R. K.; Clyburne, J. A. C., Organometallics 2008, 27, 5777─5799; (b) Ellul, C. E.; Reed, G.; Mahon, M. F.; Pascu, S. I.; Whittlesey, M. K., Organometallics 2010, 29, 4097─4104; (c) Ellul, C. E.; Mahon, M. F.; Whittlesey, M. K., J. Organomet. Chem. 2010, 695, 6─10. (d) Cabeza, J. A.; Garcia-Alvarez, P., Chem. Soc. Rev. 2011, 40, 5389─5405.
    (4) (a) Cooke, C. E.; Ramnial, T.; Jennings, M. C.; Pomeroy, R. K.; Clyburne, J. A. C., Dalton Trans. 2007, 1755─1758; (b) Milosevic, S.; Brenner, E.; Ritleng, V.; Chetcuti, M. J., Dalton Trans. 2008, 1973─1975.
    (5) 柯威名,國立臺灣師範大學碩士論文,2009。
    (6) 陳彥銘,國立臺灣師範大學碩士論文,2010。
    (7) 陳佩瑄,國立臺灣師範大學碩士論文,2011。
    (8) (a) Hamel, E., Med. Res. Rev. 1996, 16, 207-231; (b) Nicolaou, K. C.; Boddy, C. N. C.; Bräse, S.; Winssinger, N., Angew. Chem. Int. Ed. 1999, 38, 2096─2152; (c) Hajduk, P. J.; Bures, M.; Praestgaard, J.; Fesik, S. W., J. Med. Chem. 2000, 43, 3443─3447; (d) Bringmann, G.; Menche, D., Acc. Chem. Res. 2001, 34, 615─624; (e) Lloyd-Williams, P.; Giralt, E., Chem. Soc. Rev. 2001, 30, 145─157; (f) Baudoin, O.; Cesario, M.; Guénard, D.; Guéritte, F., J. Org. Chem. 2002, 67, 1199─1207.
    (9) (a) Ullmann, F.; Bielecki, J., Ber. Dtsch. Chem. Ges. 1901, 34, 2174─2185; (b) Degnan, A. P.; Meyers, A. I., J. Am. Chem. Soc. 1999, 121, 2762─2769.
    (10) (a) Semmelhack, M. F.; Helquist, P. M.; Jones, L. D., J. Am. Chem. Soc. 1971, 93, 5908─5910; (b) Tsou, T. T.; Kochi, J. K., J. Am. Chem. Soc. 1979, 101, 7547─7560; (c) Percec, V.; Bae, J.-Y.; Zhao, M.; Hill, D. H., J. Org. Chem. 1995, 60, 1066─1069.
    (11) (a) Clark, F. R. S.; Norman, R. O. C.; Thomas, C. B., J. Chem. Soc., Perkin Trans. 1 1975, 121─125; (b) Uchiyama, M.; Suzuki, T.; Yamazaki, Y., Chem. Lett. 1983, 12, 1165─1166; (c) Yadav, J. S.; Gayathri, K. U.; Ather, H.; Rehman, H. u.; Prasad, A. R., J. Mol. Catal. A: Chem. 2007, 271, 25─27; (d) Xu, Z.; Mao, J.; Zhang, Y., Catal. Commun. 2008, 9, 97─100.
    (12) (a) Hennings, D. D.; Iwama, T.; Rawal, V. H., Org. Lett. 1999, 1, 1205─1208; (b) Bedford, R. B.; Hazelwood, S. L.; Albisson, D. A., Organometallics 2002, 21, 2599─2600; (c) Dumbre, D. K.; Wakharkar, R. D.; Choudhary, V. R., Synth. Commun. 2010, 41, 164─169.
    (13) (a) Sherry, B. D.; Fürstner, A., Acc. Chem. Res. 2008, 41, 1500─1511; (b) Lee, A. S.-Y.; Chen, P.-L.; Chang, Y.-T.; Tsai, H.-T., J. Chin. Chem. Soc. 2012, 59, 452─454.
    (14) (a) Demir, A. S.; Reis, Ö.; Emrullahoglu, M., J. Org. Chem. 2003, 68, 10130─10134; (b) Evano, G.; Blanchard, N.; Toumi, M., Chem. Rev. 2008, 108, 3054─3131; (c) Kirai, N.; Yamamoto, Y., Eur. J. Org. Chem. 2009, 2009, 1864─1867.
    (15) (a) Herrmann, W. A., Angew. Chem. Int. Ed. 2002, 41, 1290─1309; (b) Enders, D.; Niemeier, O.; Henseler, A., Chem. Rev. 2007, 107, 5606─5655; (c) Díez-González, S.; Marion, N.; Nolan, S. P., Chem. Rev. 2009, 109, 3612─3676; (d) Poyatos, M.; Mata, J. A.; Peris, E., Chem. Rev. 2009, 109, 3677─3707.
    (16) (a) Yamamoto, Y., Synlett 2007, 1913─1916; (b) Jin, Z.; Guo, S.-X.; Gu, X.-P.; Qiu, L.-L.; Song, H.-B.; Fang, J.-X., Adv. Synth. Catal. 2009, 351, 1575─1585.
    (17) (a) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W., Tetrahedron Lett. 2002, 43, 7899─7902; (b) Amatore, C.; Cammoun, C.; Jutand, A., Eur. J. Org. Chem. 2008, 4567─4570; (c) Mitsudo, K.; Shiraga, T.; Kagen, D.; Shi, D.; Becker, J. Y.; Tanaka, H., Tetrahedron 2009, 65, 8384─8388.
    (18) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiely: 1986.
    (19) (a) Shieh, M.; Tsai, Y.-C. Inorg. Chem. 1994, 33, 2303—2305. (b) Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1994, 33, 2527—2533.
    (20) (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90—92. (b) Simmons, M. G.; Merrill, C. L.;Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827—1837.
    (21) 謝明惠、黃宗毅,未發表之結果。
    (22) 陳彥銘,國立臺灣師範大學碩士論文,2010。
    (23) 謝明惠、林建男,未發表之結果。
    (24) North A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, A24, 351—359.
    (25) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112—122.
    (26) (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155—2160; (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173—9177; (c) Becke, A. D., J. Chem. Phys. 1993, 98, 5648—5652.
    (27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    (28) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6150—6170.
    (29) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297—3305.
    (30) Wiberg, K. B. Tetrahedron 1968, 24, 1083—1096.
    (31) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066—4073; (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735—746.
    (32) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899—926.
    (33) Lin, Y. –L.; Lee, Y. –M.; Lim, C. J. Am. Chem. Soc. 2005, 127, 11336—11347.
    (34) Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.
    1. Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiely: 1986.
    2. (a) Bachman, R. E.; Whitmire, K. H., Inorg. Chem. 1994, 33, 2527-2533; (b) Shieh, M.; Tsai, Y.-C., Inorg. Chem. 1994, 33, 2303-2305.
    3. 繆佳曄,國立臺灣師範大學博士論文,2012。
    4. 陳思瑋,國立臺灣師範大學碩士論文,2011。
    5. 簡立慈,國立臺灣師範大學碩士論文,2012。
    6. North A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, A24, 351—359.
    7. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112—122.

    無法下載圖示 本全文未授權公開
    QR CODE