簡易檢索 / 詳目顯示

研究生: 戴仲瑜
Tai, Chung-Yu
論文名稱: 灰狼演算法應用於複合電力電動車輛系統之控制器設計
Control Unit Design Using Gray Wolf Algorithm for a Multiple-Electric-Energy Vehicle
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 控制器設計灰狼演算法規則庫管理人工蜂群演算法複合電力
英文關鍵詞: control unit design, gray wolf algorithm, rule-based management, artificial bee colony algorithm, multiple electric power
DOI URL: http://doi.org/10.6345/NTNU202000879
論文種類: 學術論文
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用灰狼演算法(Gray Wolf Algorithm, GWA)進行複合電力車之電力系統控制器設計。選定Tesla Model 3作為目標車輛,並透過動力輸出馬達、傳動系統、目標車輛動態參數、駕駛行為參數,將目標車輛數學化。並透過鋰電池模型、燃料電池模型與超級電容模型,建立一含三電力源之複合電力電動車模型。基於目標車輛與標準行車型態,根據不同控制策略:規則庫控制(Rule-based)、最小等效油耗控制策略(Equivalent Consumption Minimization Strategy, ECMS)、人工蜂群演算法(Artificial Bee Colony Algorithm, ABC)、GWA進行電力系統控制器設計。分析控制策略於行車型態下所消耗之電力進行比較,並使用快速雛型控制器(Rapid Prototyping Controller)進行即時(Real time, RT)控制,測試即時控制策略於實際車輛之可行性。ECMS、ABC、GWA於NEDC與規則庫控制之電力消耗比較,電力消耗改善為[33.8%、25.8%、32.5%],於FTP-72改善為[32.5%、25.1%、30.2%],灰狼演算法有較佳改善。GWA、GWA(RT)、GWA(HIL)電力消耗累積於NEDC下為[4270仟焦、4430仟焦、4483仟焦],FTP-72為[5183仟焦、5197仟焦、5251仟焦],其具有高度相似,未來可應用於實際車輛上。

    To design the power system of an electric vehicle control unit, we used the gray wolf algorithm(GWA). According to the target vehicle-Tesla model 3, we built the traction motor, transmission system, target vehicle dynamics, driving behavior parameters to formulate a target vehicle simulation system. Then, we built the electric power source system with the lithium battery model, fuel cell model and supercapacitor model. The target vehicle simulation system and the electric power source system were combined to form a multiple-electric energy vehicle system and the vehicle control unit was employed to calculate the power consumption. Based on the target vehicle and standardized driving cycles, we adopted different control strategies such as rule-based control, ECMS, artificial bee colony algorithm (ABC), gray wolf algorithm (GWA) to design the power system control unit. By analyzing the power consumed of each algorithm under different driving cycles for comparison. We used a rapid prototype controller on the real-time control platform to test the feasibility of the control strategy in an actual vehicle.
    Comparing the power consumption of ECMS, ABC, GWA in NEDC driving cycles with the rule base control, the power consumption is improved by [33.8%, 25.8%, 32.5%]. The improvement for the FTP-72 case is [32.5%, 25.1%, 30.2%], which shows respectively that the gray wolf algorithm has better power consumption improvement. Comparing the power consumption of GWA, GWA(RT) and GWA(HIL) in NEDC driving cycle, the power consumption is [4272(kJ), 4430(kJ)], and [5183(kJ), 5197(kJ), 5251(kJ)] in FTP-72 driving cycle respectively. It has a very high similarity compared with real-time control, which can be used on the actual electric vehicle in the future.

    摘要 i Abstract ii 誌謝 iv 目 次 v 表 次 viii 圖 次 ix 第 一 章 緒論 1 1.1 引言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究方法 4 1.5 文獻回顧 7 1.6 論文架構 12 第 二 章 子系統架構與目標車輛模型 13 2.1 系統架構 13 2.1.1 目標車輛系統 14 2.2 行車型態模塊 16 2.3 駕駛行為控制模塊 17 2.4 動力輸出馬達 18 2.5 燃料電池模型 19 2.6 鋰電池模型 20 2.7 超級電容模型 21 2.8 傳動系統 23 2.9 目標車輛動態模型 24 2.10 硬體嵌入式系統架構 25 2.10.1 快速雛型控制器 25 2.10.2 硬體嵌入式系統(HIL)模型架構 26 2.10.3 硬體嵌入式系統(HIL)硬體架構 27 第 三 章 控制器控制策略設計 29 3.1 複合電力源電動車架構 29 3.2 規則庫控制策略 30 3.3 最小等效油耗控制策略 33 3.4 仿生控制策略之人工蜂群演算法 36 3.4.1 人工蜂群演算法介紹 36 3.4.2 人工蜂群演算法流程圖 37 3.5 仿生控制策略之灰狼演算法 38 3.5.1 灰狼演算法介紹 38 3.5.2 灰狼演算法建立步驟 39 3.5.3 灰狼演算法流程圖 42 第 四 章 模擬結果與討論 43 4.1 各策略車速追蹤與行駛距離結果 43 4.1.1 NEDC行車型態速度追蹤結果 43 4.1.2 FTP-72行車型態速度追蹤結果 44 4.1.3 NEDC行車型態行駛距離結果 45 4.1.4 FTP-72行車型態行駛距離結果 45 4.2 控制策略之複合電力源分配結果 46 4.2.1 規則庫控制模式切換與電力分配結果 46 4.2.2 最小等效油耗控制策略之電力分配結果 48 4.2.3 仿生演算法之電力分配結果 49 4.2.4 各控制策略殘電量模擬結果 54 4.3 電力消耗累積分析與比較 56 4.4 硬體嵌入式系統結果分析 60 第 五 章 結論與未來工作 63 5.1 結論 63 5.2 未來工作與建議 64 參考文獻 65 符號彙整 69

    [1] Bp plc, BP Statistical Review of World Energy, UK: British Petroleum, 2017.
    [2] 蔡鴻德、楊鍇行、黃星富, “空氣汙染防制新作為”,國土及公共治理季刊,第5卷,第3期,2017。
    [3] S. M. Lukic and A. Emadi, “Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles,” IEEE Trans. Veh. Tech., vol. 53, no. 2, pp. 385-389, 2004.
    [4] H. YOO, S. K. SUL, Y. Park, J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Transaction on Industry Applications, vol. 44, pp. 108-114, 2008.
    [5] Y. Tang, W. Yuan, Ma. Pan, Z. Wan, “Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application,” Applied Energy, vol. 88, pp. 68-76, 2011.
    [6] P. Thounthong, S. Raël, B. Davat, “Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle,” Journal of Power Sources, vol. 158(1), p.p.806-814, 2011.
    [7] P. Thounthong, S. Raël, B. Davat, “Energy management of fuel cell/battery/ supercapacitor hybrid power source for vehicle applications,” Journal of Power Sources, vol. 193(1), pp.376-385, 2009.
    [8] E. Morganti and M. Browne, “Technical and operational obstacles to the adoption of electric vans in France and the UK: An operator perspective”, Transport Policy, vol. 63, pp. 90-97, 2018.
    [9] 賴清德,能源政策專案報告,立法院第9屆第5會期,2018。
    [10] K. S. Gallagher and E. Muehlegger, “Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology,” J. of Environmental Economics and Management, vol. 61, pp. 1-15, 2011.
    [11] 鄭冠淳,“車輛中心車輛產業調查與分析”,2020。
    [12] PingWest,“科技新報電動車汽車科技”,2019。
    [13] Tesla official website Tesla Model 3. 取自https://www.tesla.com/zh_tw/model3
    [14] K. Onda, T. Ohshima, M. Nakayama, K. Fukuda, T. Araki, “Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles,” Journal of Power Sources, vol. 158, pp. 535–542, 2006.
    [15] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy Theory, Experiment and Application Second Edition, 2005.
    [16] A.A. Pesaran, M. Keyser, “Thermal Characteristics of Selected EV and HEV Batteries,” Annual Battery Conference, Long Beach, California, January 9-12, 2001.
    [17] P. Patel, “Cobalt blues: A shortage of the metal could create a bottleneck for electric vehicles”, Scientific American, pp. 21, Jan, 2018.
    [18] E. Schacht, B. Bezaire, B. Cooley, K. Bayar, et al, “Addressing Drivability in an Extended Range Electric Vehicle Running an Equivalent Consumption Minimization Strategy (ECMS),” SAE 2011 World Congress & Exhibition, pp.15, 2011.
    [19] L. Serrao, S. Onori, G. Rizzoni, “ECMS as a realization of Pontryagin's minimum principle for HEV control,” American Control Conference Hyatt Regency Riverfront, 2009.
    [20] R. Giorgio, G, Yann, S. Benedetto, “A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management Cristian Musardo1,” McKinsey & Co.European Journal of Control, pp. 509–524, 2005.
    [21] K.M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control System Magazine, vol. 22(3), pp. 52-67, 2002.
    [22] Y.H. Hung, Y.M. Tung, C.H. Chang, “Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain,” Applied Energy, vol. 173, pp. 184-196, 2016.
    [23] 李維平、李元傑、謝明勳,“以群中心茦略改良人工人工蜂群演算法”,資訊管理學報,25-44頁,第二十一卷,第一期,2014。
    [24] 李鎧麟,“人工蜂群演算法應用於三電力電動車系統之最佳能量管理”,國立臺灣師範大學,碩士論文,2018。
    [25] M. Seyedali, M. Seyed Mirjalilib, L. Andrew, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69(3), pp. 46-61, 2014.
    [26] D. Ali, H. Azeddine, Z. Samir, S. Abdelhakim, B. Mohamed Fouad, M. Tedjani, M. Mohamed, “Energy management strategy of Supercapacitor/Fuel Cell energy storage devices for vehicle applications,” International journal of hydrogen energy, vol. 44, pp. 23416-23428, 2019.
    [27] D. Ramaswamy, R. McGee, S. Sivashankar, A. Deshpande, J. Allen, K. Rzemien, W. Stuart, “A case study in hardware-in-the-loop testing: Development of an ECU for a hybrid electric vehicle,” SAE Technical Paper, no. 2004-01-0303, 2004.
    [28] H. K. Fathy, Z. S. Filipi, J. Hagena, and J. L. Stein, “Review of hardware-in-the-loop simulation and its prospects in the automotive area. In Defense and Security Symposium,” International Society for Optics and Photonics, pp. 62280E-62280E, 2006.
    [29] G. Paganelli, M. Tateno, A. Brahma, G. Rizzoni, Y. Guezennec, “Control development for a hybrid-electric sport-utility vehicle: Strategy, implementation and field test results,” Proceedings of the American Control Conference, vol. 6, pp. 5064-5069, 2001.
    [30] G. Paganelli, S. Delprat, T.M. Guerra, J. Rimaux, J.J. Santin, “Equivalent consumption minimization strategy for parallel hybrid powertrains,” IEEE Vehicular Technology Conference, vol. 4, pp. 2076-2081, 2002.
    [31] P. Pisu and G. Rizzoni, “A comparative study of supervisory control strategies for hybrid electric vehicles,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 506-518, 2007.
    [32] G. Paganelli, Y. Guezennec, and G. Rizzoni, “Optimizing control strategy for hybrid fuel cell vehicle,” SAE 2002 World Congress, no. 2002-01-0102, 2002.

    無法下載圖示 電子全文延後公開
    2025/08/03
    QR CODE