研究生: |
陳宥蓁 Chen, Yu-Chen |
---|---|
論文名稱: |
鋁合金與ABS塑膠板材異質接合之單懸臂振動壽命研究 Vibration fatigue life of aluminum alloy and ABS polymer dissimilar joint by ultrasonic lap welding |
指導教授: |
程金保
Cheng, Chin-Pao 鄭淳護 Cheng, Chun-Hu |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 振動壽命 、異質接合 、超音波銲接 、稻殼灰質 |
英文關鍵詞: | vibration life time, dissimilar joint, ultrasonic welding, rice husk ash |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DME.014.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:136 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用5052鋁合金與ABS塑膠進行超音波接合,並探討其振動壽命及拉剪強度。在試片接合之前,先使用CNC銑床在鋁合金接合面(30 mm×30 mm)鑽微陣列孔洞,再使用超音波銲接機搭接鋁合金與ABS試片,透過超音波銲接機產生的劇烈振動,使試片界面因摩擦熱而產生局部高溫,讓熔融ABS流入鋁合金孔洞內。為了提高試片的接合強度,在試片界面間添加ABS與稻殼灰質的摻雜粉末,由於稻殼燃燒後殘留的稻殼灰質含有大量二氧化矽,摻入試片界面,能提高軟材(ABS)的硬度,進而改善接合強度。
實驗前會先使用模擬軟體評估鋁合金和ABS接合後的自然頻率和振動模態,透過模擬可以瞭解試片最大位移發生位置,並預測試片的斷裂行為。此外,使用雷射都普勒振動儀(LDV)測量實際試片的振動模態輔助模擬不足的地方。透過振動實驗結果顯示,在相同孔洞深度1.5 mm且熔接時間2.5秒下,試片添加0.01 g稻殼灰質後比無添加之試片提升26 %的振動壽命;拉剪強度則由2.71 kN提升至3.59 kN,增加32 %的接合強度。若縮短孔洞深度至1.0 mm其拉剪強度提升效果更為明顯,由3.01 kN提高至4.35 kN,提高44%的接合強度,明顯能幫助塑膠與鋁合金的接合。此外,透過改變熔接時間比較試片的振動壽命和拉剪強度,發現同樣添加0.2 g ABS粉末且孔洞深度1.5 mm下,試片在熔接時間3秒的平均振動壽命為132.5 cycles,比熔接時間2.5秒的平均振動壽命110 cycles 提高20 %;拉剪強度則由2.71 kN提升至2.98 kN,提高10 %的接合強度。
In this study, 5052 aluminun alloy and ABS polymer were used as experimental materials to be dissimilar joined and explored the vibration life and tensile shear strength of the joints. In order to make the two dissimilar materials to be joined successfully, the micro-hole array have been made in the surface of aluminun alloy (30 mm × 30 mm) by CNC milling machine. Then, the ultrasonic welding machine was used to join the aluminun alloy and ABS polymer. The ultrasonic vibration will cause the frictional heat between the surfaces of dissimilar materials to melt the ABS, and the molten ABS was forced to flow into the micro-hole of aluminun alloy. In order to improve the joining strength of the dissimilar joint, the mixed powder of ABS and rice husk ash was added to the interface of the dissimilar materials. Since the rice husk ash contains a large amount of silicon dioxide after combustion, mixing in the interface may improve the joining properties of dissimilar joint.
Before executing the experimental process, the natural frequency and vibration mode of the dissimilar joint have been analyzed by the simulation software. The maximum displacement position can be obtained through computer soft simulation. In addition, a Laser Doppler Vibrometer (LDV) was used to measure the vibration mode of the actual dissimilar joint to assist the simulation analysis. The experimental results show that the vibration life of dissimilar joint has been upgraded 26% for adding 5% rice husk ash in the interface for the same hole depth of 1.5 mm and a welding time of 2.5 seconds. In the same condition, the tensile shear load is increased from 2.71 kN to 3.59. kN, which has an increment of 32% in strength. When the micro-hole depth has been shortened from 1.5 mm to 1.0 mm, the tensile shear load of dissimilar joint can be improved from 3.01 kN to 4.35 kN, which has an increment of 44% in strength.
Furthermore, proper control of welding time can improve the vibration life and joining strength of the dissimilar joint. According to the experimental results of adding 0.2 g ABS powder to joining interface and choosing the 1.5 mm micro-hole depth, the average vibration life of the dissimilar joint at the welding time of 3 seconds was 132.5 cycles, which has an increment of 20% in vibration life than the results of 2.5-second welding time. On the other hand, the tensile shear load of the dissimilar joint increases from 2.71 kN to 2.98 kN when the welding time increases from 2.5 s to 3.0 s, which has an increment of 10% in strength.
1.U.K. Kamalaesh and S. Elangovan, “Analysis and comparison of ultrasonic insertion process using brass and stainless steel horns”, Journal of Engineering Sciences., Vol. no.1issue no 1, pp.13-33, 2016.
2.T.-C. Ko,C.-C. Lin and R.-C. Chu, “Vibration of bonded laminated lap-joint plates using adhesive interface elements”, Journal of Sound and Vibration., Vol.184, pp.567–583, 1995.
3.鍾權任,“經電化學處理鋁合金1050與射出成形塑料接合效果之探討”,國立交通大學,機械工程系所碩士論文,新竹,2012年。
4.P. Kah, R. Suoranta, J. Martikainen, and C. Magnus, “Techniques for joining dissimilar materials: metals and polymers”, Reviews on Advanced Materials Science, pp.152-164, 2014.
5.日本Taisei Plas株式會社www.sentronic.com.tw/download/Sentronic-NMT.pdf.
6.C. D. Prest, D. Weaber, “Ultrasonic bonding discrete plastic part to metal”, Assignee: Apple Inc., United States Patent 8049120 B2, 2011.
7.M. Rosario, C.A. Nogueira and F. Margarido, “Production and characterisation of amorphous silica from rice husk waste”, 4th International conference on engineering for waste and biomass valorisation., pp.1817–1822. , 2012
8.P. Jedrasiak, H. R. Shercliff, Y. C. Chen, L. Wang, P. Prangnell and J. Robson, “Modeling of the thermal field in dissimilar alloy ultrasonic welding”, Journal of Materials Engineering and Performance., Vol.24, pp.799–807, 2015.
9.V.N. Khmelev and A.D. Abramov, “Model of process and calculation of energy for a heat generation of a welded joint at ultrasonic welding polymeric thermoplastic materials”, 8th International Siberian Workshop and Tutorials EDM., pp.316-322, 2007.
10.Y. Yan, D.T. Zhang, C. Qiu, and W. Zhang, “Dissimilar friction stir welding between 5052 aluminum alloy and AZ31 magnesium alloy”, Journal of Transactions of Nonferrous Metals Society of China., Vol.20, pp.619-623, 2010.
11.維信鋁合金有限公司 http://www.wsal.com.tw/ugC_Support5052.asp
12.西村仁,圖解加工材料,易博士出版社,2018。
13.吳文政,接著劑的原理,科學新天地,pp.46-55,2006。
14.C. Rans and P.V. Straznicky, “Riveting Process Induced Residual Stresses Around Solid Rivets in Mechanical Joints”, Journal of Aircraft, Vol.44, No.1, pp.323-329, 2007.
15.葉人瑜,“嵌入式射出成形製品殘留應力之研究與改善”,國立交通大學,碩士學位,2010。
16.日本MEC公司, http://www.mec-co.com/en/surf_create/amalpha.html, 2014
17.劉剛瑋,“鋁鎂合金經表面處理後與塑料結合之研究”,臺北科技大學,資源工程研究所碩士論文,2012年。
18.S, Kou, Welding Metallurgy, John Wiley & Sons, USA, 2003.
19.R.S. Mishra, Z.Y. Ma, “ Friction stir welding and processing”, Materials science and engineering, Vol.50, pp.1-78, 2005.
20.M. Enami, M. Farahani and M. Sohrabian, “Evaluation of mechanical properties of resistance spot welding and friction stir spot welding on aluminium alloys”, Journal of International Conference on researches in Science and Engineering., 2016.
21.C. Shao, T.H. Kim, S.J. Hu, J.J. Jin, J.A. Abell and J.P. Spicer “Tool wear monitoring for ultrasonic metal welding of lithium-ion batteries”, Journal of Manufacturing Science and Engineering, Vol.138, Issue 5, 2015.
22.王怡雯,5052鋁合金與ABS塑膠摻雜碳化稻殼粉末異質接合特性研究,國立台灣師範大學,碩士論文,2017。
23.N.K. Sharma, W.S. Williams, and A. Zangvil, “Formation and structure of silicon carbide whiskers from rice hulls”, Journal of American Ceramic Society., Vol. 67, pp.715-720, 1984.
24.V.M.H Govindarao, “Utilization of rice husk-a preliminary-analysis.” Journal of Scientific & Industrial Research, Vol.39, no.9, pp. 495-515, 1980.
25.V. Della, I. Kühn and D. Hotza, “Rice husk ash as an alternate source for active silica production.” Materials Letters, Vol.57, 2002, pp.818–821.
26.P. Andrew, “X-ray diffraction and scanning electron microscope studies of processed rice hull silica.” Journal of the American Oil Chemists’ Society, Vol. 67, Issue 9, 1990, pp. 576–584.
27.A. Onojah, A.N. Amah and B.O. Ayomanor “Comparative studies of silicon from rice husk ash and natural quartz.” American journal of scientific and industrial research, pp.146-149, 2012.
28.T.H. Liou, “Evolution of chemistry and morphology during the carbonization and combustion of rice husk”, Journal of Carbon, Vol. 42, pp. 785-794, 2004.
29.B.S. Todkar, O.A. Deorukhkar and S.M. Deshmukh, “Extraction of silica from rice husk”, International Journal of Engineering Research and Development, Vol.12, pp.69-74, 2016.
30.R. Patil, R. Dongre and J. Meshram, “Preparation of silica powder from rice husk”, IOSR Journal of applied chemistry, pp.26-29, 2014.
31.Y. Tokiwa, B.P. Calabia, C.U. Ugwu and S. Aiba, “Biodegradability of plastics”, International Journal of Molecular Sciences, Vol.10, pp.3723-3742, 2009.
32.V.K. Thakur, M.K. Thakur, R.K. Gupta, “Review: raw natural fiber-based polymer composites”, International Journal of Polymer Analysis and Characterization, Vol.19, pp.256–271, 2014.
33.H. Ku, H. Wang, N. Pattarachaiyakoop and M. Trada, “A review on the tensile properties of natural fiber reinforced polymer composites”, Compos Part B: Engineering, Vol.42, pp.856–873, 2011.
34.B. Barari, T. Ellingham, I. Qamhia, K. Pillai, R. El-Hajjar and L.-S. Turng and R. Sabo, “Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process”, Compos Part B: Engineering, Vol.84, pp.277–284, 2016.
35.C. Unterweger, O. Brüggemann and C. Fürst, “Synthetic fibers and thermoplastic short fiber reinforced polymers: properties and characterization”, Polymer Composites, Vol.35, pp.227–236, 2014.
36.T.F.A Santos, G.C. Vasconcelos, W.A. de Souza, M.L. Costa and E.C. Botelho, “Suitability of carbon fiber-reinforced polymers as power cable cores: Galvanic corrosion and thermal stability evaluation”, Materials and Design, Vol.65, pp.780–788, 2015.
37.X.-Q. Pei, R. Bennewitz and A.K. Schlarb, “Mechanisms of friction and wear reduction by carbon fiber reinforcement of PEEK”, Tribology Letter, Vol.58, pp.1–10, 2015.
38.S. Bahadur, Y. Zheng, “Mechanical and tribological behavior of polyester reinforced with short glass fibers”, Wear, Vol.137, pp.251–266, 1990.
39.S.W. Zhang, “State-of-the-art of polymer tribology”, Tribology International, Vol.31, pp.49–60, 1998.
40.K. Friedrich, Z. Zhang and A.K. Schlarb, “Effects of various fillers on the sliding wear of polymer composites”, Composites Science and Technology, Vol.65, pp.2329–2343, 2005.
41.D.L. Burris, B. Boesl, G.R. Bourne and W.G. Sawyer, “Polymeric nanocomposites for tribological applications”, Macromolecular Materials and Engineering, Vol.292, pp.387–402, 2007.
42.Y. Zhang, S. Zhu, Y. Liu, B. Yang and X. Wang, “The mechanical and tribological properties of nitric acid-treated carbon fiber-reinforced polyoxymethylene composites”, Applied Polymer Science, Vol.132, 2015.
43.V. Dhand, G. Mittal, K.Y. Rhee, S.-J. Park and D. Hui, “A short review on basalt fiber reinforced polymer composites”, Composites Part B: Engineering, Vol.73, pp.166–180, 2015.
44.E. Omrani, B. Barari, A.D. Moghadam, P.K. Rohatgi and K.M. Pillai, “Mechanical and tribological properties of self-lubricating bio-based carbon-fabric epoxy composites made using liquid composite molding”, Tribology International, Vol.92, pp.222–232, 2015.
45.I. Avdeev and M. Gilaki, “Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact”, Journal of Power Sources, Vol. 271, pp.382–391, 2014.
46.P. Yang, S.S. Shams, A. Slay, B. Brokate and R. Elhajjar, “Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores”, Composite Structures, Vol.129, pp.213–223, 2015.
47.P.L. Menezes, Kisore ,S.V. Kailas and M.R. Lovell, “Friction and transfer layer formation in polymer–steel tribo-system: role of surface texture and roughness parameters”, Wear, Vol.271, pp.2213–2221, 2011.
48.O. Faruk, A.K. Bledzki, H.-P. Fink and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010”, Progress in Polymer Science, Vol.37, pp.1552– 1596, 2012.
49.I.I. Qamhia, S.S. Shams and R.F. El-Hajjar, “Quasi-isotropic triaxially braided cellulose-reinforced composites”, Mechanics of Advanced Materials and Structures, Vol.22, pp.988–995, 2015.
50.F.Z. Arrakhiz, M. El Achaby, M. Malha, M.O. Bensalah, O. F-Fehri, R. Bouhfid, K. Benmoussa and A.Qaiss, “Mechanical and thermal properties of natural fibers reinforced polymer composites: doum/low density polyethylene”, Materials and Design, Vol.43, pp.200–205, 2013.
51.V.K. Thakur and M.K. Thakur, “Processing and characterization of natural cellulose fibers/thermoset polymer composites”, Carbohydrate Polymers, Vol.109, pp.102–117, 2014.
52.A. Elkhaoulani, F. Arrakhiz, K. Benmoussa, R. Bouhfid and A. Qaiss, “Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene”, Materials and Design, Vol.49, pp.203–208, 2013.
53.P.L. Menezes, P.K. Rohatgi and M.R. Lovell, “Tribology of natural fiber reinforced polymer composites”, 2011 International Joint Tribology Conference, pp.341–343, Los Angeles, California, USA, October 2011.
54.王添武,多效能粉料組成物及其聚合體結構,專利號CN101805152B。
55.侯美麗,含稻殼灰之混凝土,專利號CN102311249A。
56.王麗華、林俊一,一種將稻殼灰化後用於處理水中重金屬的方法,申請案號 095145999。
57.S.D. Saravanana and M.S. Kumarb, “Effect of mechanical properties on rice husk ash reinforced aluminum alloy (alsi10mg) matrix composites”, Procedia Engineering, Vol.64, pp.1505 – 1513, 2013.
58.BK吉林尼有限公司,用於製造熱塑性鞋強化材料之填充料混合物,專利號 CN102471499A。
59.孫慶鴻、張啟軍,振動與噪音的阻尼控制,機械工業出版社,38-57頁,1992年。
60.S. S. Rao, “Mechanical vibrations”, 2nd ed., Addison-Wesley Publishing Company, Inc, pp.4-160, 1990.
61.S. He and M.D. Rao, “Vibration analysis of adhesively bonded lap joint, part I: Theory.” Journal of Sound and Vibration, Volume 152, Issue 3, 8, pp. 405-416, February 1992.
62.Y. B. Patil and R. B. Barjibhe, “Modal analysis of adhesively bonded joints of different materials.” International Journal of Modern Engineering Research, Vol.3, Issue.2, pp.633-636, March-April. 2013.
63.N.J Aghdam, S. Hassanifard, M.M Ettefagh, and A. Nanvayesavojblaghi, “Investigating fatigue life effects on the vibration properties in friction stir spot welding using experimental and finite element modal analysis.” Journal of mechanical engineering, Vol 60, No 11, 2014.
64.S. Mirzaei “Numerical analysis of dissimilar metal-to-composite bonding under mixed load and investigation of crack initiation of propagation in adhesive bonding” Aldrovandia Journal, Volume. 28, No 1; pp. 182-198, 2017.
65.M. Bhusnar and S. S. Sarawade, “Modal analysis of rectangular plate with lap joints to find natural frequencies and mode shapes.” IOSR Journal of Mechanical & Civil Engineering, pp.06-14, March 2016.
66.S.M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach “Nondestructive detection of fatigue cracks in pm 304 stainless steel by internal friction and elasticity.”,J. Mater, Res, Vol.8, pp.2216-2223, 1993.
67.https://www.polytec.com.