簡易檢索 / 詳目顯示

研究生: 胡凱崴
Hu, Kai-Wei
論文名稱: 探討蛋白質醣化對阿茲海默症中乙型類澱粉蛋白(Aβ)聚集的影響
Exploring the impact of protein glycation on β-amyloid peptide (Aβ) aggregation in Alzheimer's Disease
指導教授: 杜玲嫻
Tu, Ling-Hsien
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 93
中文關鍵詞: 醣化最終產物蛋白質聚集阿茲海默症乙型類澱粉蛋白
英文關鍵詞: Advanced glycation end-products, aggregation, Alzheimer’s Disease, β-amyloid
DOI URL: http://doi.org/10.6345/NTNU201900676
論文種類: 學術論文
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默症的特徵在於患者腦中存在由乙型類澱粉蛋白形成的老年斑塊。先前研究顯示阿茲海默症病患腦中的斑塊與醣化最終產物共存。醣化最終產物是由蛋白質與還原醣或高反應性二羰基化合物進行一系列非酶催化反應。此外,醣化最終產物也被證實會增加乙型類澱粉蛋白的毒性。為了瞭解醣化可能對乙型類澱粉蛋白的影響,我們分別將第16號及第28號位的離胺酸利用羧乙基離胺酸取代,合成出兩種醣化乙型類澱粉蛋白。然後,我們監測了兩種醣化乙型類澱粉蛋白的聚集和構象變化的表現。此外,我們渴望知道兩種醣化乙型類澱粉蛋白與原生型乙型類澱粉蛋白在銅離子結合親和力及產生活性氧物質的能力差異。
    我們的結果顯示出醣化作用顯著地延緩聚集過程,但最終無法預防成熟纖維的形成。另外,兩種醣化修飾胜肽仍維持與銅離子結合及產生活性氧物質的能力。我們推測醣化乙型類澱粉蛋白擁有較高毒性可能是由於其停留在寡聚態的時間相對較長。我們可能需要考慮以預防醣化或針對醣化蛋白來治療阿茲海默症。

    Alzheimer’s Disease (AD) is characterized by the presence of senile plaques formed by β-amyloid (Aβ) peptides in the patient’s brain. Previous studies have shown that the plaques in the AD brains are co-localized with the advanced glycation end products (AGEs), which is formed from a series of non-enzymatic reactions of proteins with reducing sugars or reactive dicarbonyls. Moreover, AGEs also were demonstrated to increase the toxicity of the Aβ peptides. In order to clarify the possible impact of glycation on Aβ aggregation, we synthesized two AGE-Aβ42 peptides by replacing Lys 16 and Lys 28 with N(ε)-carboxymetheyllysine respectively. Afterwards, we monitored the performance of aggregation and conformational change for two glycated Aβ42 peptides. Furthermore, we eager to know the difference of Aβ42 and two AGE-Aβ42 peptides on the ability of binding affinity with copper ion and reactive oxygen species (ROS) production.
    Our data show that glycation significantly slows down the aggregation process but does not prevent the formation of mature fibrils. In addition, two glycated Aβ42 peptides maintain binding affinity with copper ion and the ability to produce ROS. We speculate that the higher toxicity of glycated Aβ42 might result from a relative longer persistence of its oligomeric form. We may need to consider the ways to prevent glycation or target glycated proteins in AD treatments.

    謝誌 i 摘要 ii Abstract iii 目錄 iv 中英對照表 vi 圖索引 xiv 表索引 xvii 第一章 緒論 1 1-1 類澱粉蛋白與人類疾病的聯繫 1 1-2 類澱粉蛋白的結構與生成機制 3 1-3 乙型類澱粉蛋白(β-amyloid peptide, Aβ) 7 1-4 蛋白質的醣化反應 10 1-5 乙型類澱粉蛋白的醣化及醣化修飾位置選擇 15 1-6 乙型類澱粉蛋白與銅離子鍵結構型及氧化壓力關係 25 1-7 研究動機 27 第二章 實驗材料與流程 29 2-1實驗材料與儀器 29 2-2實驗原理與方法 31 第三章 結果與討論 59 3-1胜肽鑑定 59 3-2利用硫磺素T觀察乙型類澱粉蛋白與其醣化修飾胜肽之聚集情形 63 3-3核誘發(seeding)對乙型類澱粉蛋白與其醣化修飾胜肽之聚集影響 65 3-4乙型類澱粉蛋白與其醣化修飾胜肽間的聚集影響 67 3-5觀察乙型類澱粉蛋白與其醣化修飾胜肽之二級結構變化 69 3-6乙型類澱粉蛋白與其醣化修飾胜肽之聚集情況判定 74 3-7乙型類澱粉蛋白與其醣化修飾胜肽粒徑大小 77 3-8乙型類澱粉蛋白及其醣化修飾胜肽與銅(II)離子的結合能力 82 3-9乙型類澱粉蛋白與其醣化修飾胜肽產生羥基自由基(·OH)含量比較 84 第四章 結論 86 參考資料 87

    [1] Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-66.
    [2] Chiti, F.; Dobson, C. M., Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem. 2017, 86, 27-68.
    [3] Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S.; Merlini, G.; Saraiva, M. J.; Westermark, P., Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 2014, 21 (4), 221-4.
    [4] Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S.; Merlini, G.; Saraiva, M. J.; Westermark, P.; Nomenclature Committee of the International Society of, A., Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2012, 19 (4), 167-70.
    [5] Westermark, P.; Andersson, A.; Westermark, G. T., Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 2011, 91 (3), 795-826.
    [6] Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.; Trojanowski, J. Q.; Jakes, R.; Goedert, M., Alpha-synuclein in Lewy bodies. Nature 1997, 388 (6645), 839-40.
    [7] Goedert, M., NEURODEGENERATION. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 2015, 349 (6248), 1255555.
    [8] Martin, L.; Latypova, X.; Terro, F., Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 2011, 58 (4), 458-71.
    [9] Selkoe, D. J.; Hardy, J., The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 2016, 8 (6), 595-608.
    [10] Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300 (5618), 486-9.
    [11] Thibaudeau, T. A.; Anderson, R. T.; Smith, D. M., A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun. 2018, 9 (1), 1097.
    [12] Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F., Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018, 14, 450-464.
    [13] Fossati, S.; Giannoni, P.; Solesio, M. E.; Cocklin, S. L.; Cabrera, E.; Ghiso, J.; Rostagno, A., The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain. Neurobiol. Dis. 2016, 86, 29-40.
    [14] Tyedmers, J.; Mogk, A.; Bukau, B., Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 2010, 11 (11), 777-88.
    [15] Dobson, C. M., Protein folding and misfolding. Nature 2003, 426 (6968), 884-90.
    [16] Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R., A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (26), 16742-7.
    [17] Luca, S.; Yau, W. M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007, 46 (47), 13505-22.
    [18] van der Wel, P. C.; Lewandowski, J. R.; Griffin, R. G., Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. J. Am. Chem. Soc. 2007, 129 (16), 5117-30.
    [19] Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R.; Eisenberg, D., Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005, 435 (7043), 773-8.
    [20] Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R., A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (26), 16742-7.
    [21] Nguyen, H. D.; Hall, C. K., Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (46), 16180-5.
    [22] Sugita, Y.; Okamoto, Y. J. C. p. l., Replica-exchange molecular dynamics method for protein folding. 1999, 314 (1-2), 141-151.
    [23] Xue, W. F.; Homans, S. W.; Radford, S. E., Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (26), 8926-31.
    [24] Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-beta protein (Abeta) aggregation: techniques for the determination of Abeta aggregate size. Int. J. Mol. Sci. 2012, 13 (3), 3038-72.
    [25] Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010, 1804 (7), 1405-12.
    [26] Kumar, S.; Walter, J., Phosphorylation of amyloid beta (Abeta) peptides - a trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY) 2011, 3 (8), 803-12.
    [27] Maji, S. K.; Wang, L.; Greenwald, J.; Riek, R., Structure-activity relationship of amyloid fibrils. FEBS Lett 2009, 583 (16), 2610-7.
    [28] Serrano-Pozo, A.; Frosch, M. P.; Masliah, E.; Hyman, B. T., Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011, 1 (1), a006189.
    [29] Zafeiris, D.; Rutella, S.; Ball, G. R., An Artificial Neural Network Integrated Pipeline for Biomarker Discovery Using Alzheimer's Disease as a Case Study. Comput. Struct. Biotechnol. J. 2018, 16, 77-87.
    [30] Selkoe, D. J., Cell biology of the beta-amyloid precursor protein and the genetics of Alzheimer's disease. Cold Spring Harb Symp Quant Biol. 1996, 61, 587-96.
    [31] Olsson, F.; Schmidt, S.; Althoff, V.; Munter, L. M.; Jin, S.; Rosqvist, S.; Lendahl, U.; Multhaup, G.; Lundkvist, J., Characterization of intermediate steps in amyloid beta (Abeta) production under near-native conditions. J. Biol. Chem. 2014, 289 (3), 1540-50.
    [32] Thathiah, A.; De Strooper, B., The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat. Rev. Neurosci. 2011, 12 (2), 73-87.
    [33] Mucke, L.; Selkoe, D. J., Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. 2012, 2 (7), a006338.
    [34] Yoshiike, Y.; Chui, D. H.; Akagi, T.; Tanaka, N.; Takashima, A., Specific compositions of amyloid-beta peptides as the determinant of toxic beta-aggregation. J. Biol. Chem. 2003, 278 (26), 23648-55.
    [35] Luo, X.; Yan, R., Inhibition of BACE1 for therapeutic use in Alzheimer's disease. Int. J. Clin. Exp. Pathol 2010, 3 (6), 618-28.
    [36] Morgan, D., Immunotherapy for Alzheimer's disease. J. Intern. Med. 2011, 269 (1), 54-63.
    [37] Zhang, C., Natural compounds that modulate BACE1-processing of amyloid-beta precursor protein in Alzheimer's disease. Discov. Med. 2012, 14 (76), 189-97.
    [38] Ribet, D.; Cossart, P., Post-translational modifications in host cells during bacterial infection. FEBS Lett. 2010, 584 (13), 2748-58.
    [39] Song, L.; Xue, R.; Ge, P.; Li, M.; Wang, L.; Zheng, F.; Zhao, L.; Wang, Z.; Wang, Z.; Wang, Q.; Liu, N.; Sun, X., Identification of post-translational modifications of Abeta peptide in platelet membranes from patients with cerebral amyloid angiopathy. J. Neurol. Sci. 2017, 383, 11-17.
    [40] Iannuzzi, C.; Irace, G.; Sirangelo, I., Differential effects of glycation on protein aggregation and amyloid formation. Front. Mol. Biosci. 2014, 1, 9.
    [41] Ulrich, P.; Cerami, A., Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 2001, 56, 1-21.
    [42] Ahmed, N., Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005, 67 (1), 3-21.
    [43] Delgado-Andrade, C., Carboxymethyl-lysine: thirty years of investigation in the field of AGE formation. Food Funct. 2016, 7 (1), 46-57.
    [44] Reddy, S.; Bichler, J.; Wells-Knecht, K. J.; Thorpe, S. R.; Baynes, J. W., N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 1995, 34 (34), 10872-8.
    [45] Singh, V. P.; Bali, A.; Singh, N.; Jaggi, A. S., Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014, 18 (1), 1-14.
    [46] Grillo, M. A.; Colombatto, S., Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases. Amino Acids 2008, 35 (1), 29-36.
    [47] Castellani, R. J.; Harris, P. L.; Sayre, L. M.; Fujii, J.; Taniguchi, N.; Vitek, M. P.; Founds, H.; Atwood, C. S.; Perry, G.; Smith, M. A., Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic Biol. Med. 2001, 31 (2), 175-80.
    [48] Sasaki, N.; Fukatsu, R.; Tsuzuki, K.; Hayashi, Y.; Yoshida, T.; Fujii, N.; Koike, T.; Wakayama, I.; Yanagihara, R.; Garruto, R.; Amano, N.; Makita, Z., Advanced glycation end products in Alzheimer's disease and other neurodegenerative diseases. Am. J. Pathol. 1998, 153 (4), 1149-55.
    [49] Vitek, M. P.; Bhattacharya, K.; Glendening, J. M.; Stopa, E.; Vlassara, H.; Bucala, R.; Manogue, K.; Cerami, A., Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (11), 4766-70.
    [50] Chen, K.; Maley, J.; Yu, P. H., Potential inplications of endogenous aldehydes in beta-amyloid misfolding, oligomerization and fibrillogenesis. J. Neurochem. 2006, 99 (5), 1413-24.
    [51] Jana, A. K.; Batkulwar, K. B.; Kulkarni, M. J.; Sengupta, N., Glycation induces conformational changes in the amyloid-beta peptide and enhances its aggregation propensity: molecular insights. Phys. Chem. Chem. Phys. 2016, 18 (46), 31446-31458.
    [52] Li, X. H.; Du, L. L.; Cheng, X. S.; Jiang, X.; Zhang, Y.; Lv, B. L.; Liu, R.; Wang, J. Z.; Zhou, X. W., Glycation exacerbates the neuronal toxicity of beta-amyloid. Cell Death Dis. 2013, 4, e673.
    [53] Fica-Contreras, S. M.; Shuster, S. O.; Durfee, N. D.; Bowe, G. J. K.; Henning, N. J.; Hill, S. A.; Vrla, G. D.; Stillman, D. R.; Suralik, K. M.; Sandwick, R. K.; Choi, S., Glycation of Lys-16 and Arg-5 in amyloid-beta and the presence of Cu(2+) play a major role in the oxidative stress mechanism of Alzheimer's disease. J. Biol. Inorg. Chem. 2017, 22 (8), 1211-1222.
    [54] Emendato, A.; Milordini, G.; Zacco, E.; Sicorello, A.; Dal Piaz, F.; Guerrini, R.; Thorogate, R.; Picone, D.; Pastore, A., Glycation affects fibril formation of Abeta peptides. J. Biol. Chem. 2018, 293 (34), 13100-13111.
    [55] Ng, J.; Kaur, H.; Collier, T.; Chang, K.; Brooks, A. E. S.; Allison, J. R.; Brimble, M. A.; Hickey, A.; Birch, N. P., Site-specific glycation of Abeta1-42 affects fibril formation and is neurotoxic. J. Biol. Chem. 2019, 294 (22), 8806-8818.
    [56] Lovell, M. A.; Robertson, J. D.; Teesdale, W. J.; Campbell, J. L.; Markesbery, W. R., Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 1998, 158 (1), 47-52.
    [57] Miller, L. M.; Wang, Q.; Telivala, T. P.; Smith, R. J.; Lanzirotti, A.; Miklossy, J., Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer's disease. J. Struct. Biol. 2006, 155 (1), 30-7.
    [58] Atrian-Blasco, E.; Conte-Daban, A.; Hureau, C., Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level. Dalton Trans 2017, 46 (38), 12750-12759.
    [59] Chassaing, S.; Collin, F.; Dorlet, P.; Gout, J.; Hureau, C.; Faller, P., Copper and heme-mediated Abeta toxicity: redox chemistry, Abeta oxidations and anti-ROS compounds. Curr. Top Med. Chem. 2012, 12 (22), 2573-95.
    [60] Hureau, C.; Faller, P., Abeta-mediated ROS production by Cu ions: structural insights, mechanisms and relevance to Alzheimer's disease. Biochimie. 2009, 91 (10), 1212-7.
    [61] Smith, D. G.; Cappai, R.; Barnham, K. J., The redox chemistry of the Alzheimer's disease amyloid beta peptide. Biochim. Biophys. Acta. 2007, 1768 (8), 1976-90.
    [62] Hureau, C.; Balland, V.; Coppel, Y.; Solari, P. L.; Fonda, E.; Faller, P., Importance of dynamical processes in the coordination chemistry and redox conversion of copper amyloid-beta complexes. J. Biol. Inorg. Chem. 2009, 14 (7), 995-1000.
    [63] Shearer, J.; Szalai, V. A., The amyloid-beta peptide of Alzheimer's disease binds Cu(I) in a linear bis-his coordination environment: insight into a possible neuroprotective mechanism for the amyloid-beta peptide. J. Am. Chem. Soc. 2008, 130 (52), 17826-35.
    [64] Huang, X.; Atwood, C. S.; Hartshorn, M. A.; Multhaup, G.; Goldstein, L. E.; Scarpa, R. C.; Cuajungco, M. P.; Gray, D. N.; Lim, J.; Moir, R. D.; Tanzi, R. E.; Bush, A. I., The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999, 38 (24), 7609-16.
    [65] Borghesani, V.; Alies, B.; Hureau, C., Cu(II) binding to various forms of amyloid-beta peptides. Are they friends or foes? Eur. J. Inorg. Chem. 2018, 2018 (1), 7-15.
    [66] Guilloreau, L.; Combalbert, S.; Sournia-Saquet, A.; Mazarguil, H.; Faller, P., Redox chemistry of copper-amyloid-beta: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state. Chembiochem. 2007, 8 (11), 1317-25.
    [67] Cheignon, C.; Jones, M.; Atrián-Blasco, E.; Kieffer, I.; Faller, P.; Collin, F.; Hureau, C., Identification of key structural features of the elusive Cu–Aβ complex that generates ROS in Alzheimer’s disease. Chemical Science 2017, 8 (7), 5107-5118.
    [68] Alzheimer's Disease International. https://www.alz.co.uk/research/worldalzheimerreport2015-traditionalchinese.pdf.
    [69] Mulder, C.; Verwey, N. A.; van der Flier, W. M.; Bouwman, F. H.; Kok, A.; van Elk, E. J.; Scheltens, P.; Blankenstein, M. A., Amyloid-beta(1-42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of Alzheimer disease. Clin. Chem. 2010, 56 (2), 248-53.
    [70] Introduction of Alzheimer's Disease (Med). http://webcache.googleusercontent.com/search?q=cache:k6CkrcKaApsJ:jtp.taiwan-pharma.org.tw/111/099-104.html+&cd=1&hl=zh-TW&ct=clnk&gl=tw.
    [71] Lukiw, W. J., Amyloid beta (Abeta) peptide modulators and other current treatment strategies for Alzheimer's disease (AD). Expert. Opin. Emerg. Drugs 2012.
    [72] Choi, J. S.; Braymer, J. J.; Nanga, R. P.; Ramamoorthy, A.; Lim, M. H., Design of small molecules that target metal-A{beta} species and regulate metal-induced A{beta} aggregation and neurotoxicity. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (51), 21990-5.
    [73] Pithadia, A. S.; Lim, M. H., Metal-associated amyloid-beta species in Alzheimer's disease. Curr. Opin. Chem. Biol. 2012, 16 (1-2), 67-73.
    [74] Peptide synthesis. https://www.antibodies-online.com/resources/17/5034/peptide-synthesis-methods-and-reagents/.
    [75] Application of Fmoc-His(Boc)-OH in Fmoc-based SPPS. http://cem.com/en/application-of-fmoc-his-boc-oh-in-fmoc-based-spps.
    [76] LeVine, H., 3rd, Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta (1-40) amyloid fibrils. Arch. Biochem. Biophys. 1997, 342 (2), 306-16.
    [77] Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y., Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278 (19), 16462-5.
    [78] Wei, Y.; Thyparambil, A. A.; Latour, R. A., Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm. Biochim. Biophys. Acta. 2014, 1844 (12), 2331-7.
    [79] Bitan, G., Structural study of metastable amyloidogenic protein oligomers by photo-induced cross-linking of unmodified proteins. Methods Enzymol 2006, 413, 217-36.
    [80] Ghisaidoobe, A. B.; Chung, S. J., Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Forster resonance energy transfer techniques. Int. J. Mol. Sci. 2014, 15 (12), 22518-38.
    [81] Lakowicz, J. R., Principles of fluorescence spectroscopy. Springer Science & Business Media: 2013.
    [82] Particle size Analyzer ELSZ-2000 series. http://www.otsukael.com/product/detail/productid/1/category1id/2/category2id/1/category3id/29.
    [83] Manevich, Y.; Held, K. D.; Biaglow, J. E., Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiat. Res. 1997, 148 (6), 580-91.

    無法下載圖示 本全文未授權公開
    QR CODE