研究生: |
但漢真 Dan Han Chen |
---|---|
論文名稱: |
以平台探討滑動對剪力避震之功效 Quantifying the Effectiveness of Shear Cushioning by Sliding Plate |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 剪力避震 、滑動平台 、運動鞋 |
英文關鍵詞: | shear cushioning, sliding plate, sports shoes |
論文種類: | 學術論文 |
相關次數: | 點閱:144 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前跑鞋多以垂直方向的避震設計為主,過去研究大部份也以垂直力作為避震能力的指標。但水平力也扮演相當重要的角色,其過大的力矩會造成肌肉震動、足底軟組織潰瘍。研究發現在較滑的運動表面上做橫向動作,可減小水平力、降低關節負荷,不過目前研究並未針對滑動表面量化有進一步的分析。目的:以滑動平台量化不同的剪力避震效果,找出最合適的滑動量,達到減少垂直與水平衝擊的效果,作為未來運動鞋開發之新方向。方法:以12位習慣腳跟著地之跑者作為受試對象,藉由四種彈簧彈性係數控制滑動程度,以赤足接受走路、慢跑及快跑之測試,收集運動學與動力學資料。結果:適度強度(k=0.067~1.99 kgf/mm)的滑動能提供更佳的垂直及水平避震能力,降低膝關節與踝關節的負荷,過多的滑動則會減小腳跟離地時的推進力,影響跑步的效率。結論:本研究可運用在運動鞋大底的設計,後跟部分使用較軟的材料或提供更多的切割,減小腳跟著地時水平方向的衝擊,而前端要增加鞋底彈性,有助於向前推進力量的提升,讓跑步更有效率,同時減少運動傷害的發生。也可針對網球、籃球等需側向動作之運動,為專項運動鞋做不同方向的滑動設計。
Most designs of sports shoes focus on vertical cushion, but reducing horizontal force is also important. It would produce large moment, cause muscle vibration and impact our surface skin. Some researchers noticed sliding surface may reduce the horizontal force, but the ideal sliding amount is still unclear. Purpose: The purpose of this study was to provide different sliding effects by using different stiffness of springs to determine the ideal amount of sliding which can postpone the impact occurred and reduce both vertical and horizontal forces. Methods: 12 participants volunteered for this study, each participant was asked to perform walking, jogging and running on all four sets of springs in randomized order. Kinetic and kinematic data were calculated in this study. Results: Appropriate stiffness of springs (k=0.067~1.99 kgf/mm) could provide better vertical and horizontal cushion and reduce joint loading. But lower stiffness of springs may decrease the power during push off, influence the efficiency of running. Conclusions: To apply our findings on outsole design, we can use softer materials or provide more cuttings on rear foot, to reduce the impact during heel strike. And provide appropriate stiffness on the front forefoot to raise running speed. And try different movements to apply on more kinds of sports in future study.
中文部份
邱宏達、相子元(1996)。運動方式與鞋墊厚度對避震效果之影響。體育學報,21,207-217。
邱宏達、相子元、楊文賓(1998a)。鞋底避震反彈之人體及材料功能測試。中華醫學工程期刊,18(3),161-167。
邱宏達、相子元、楊文賓(1998b)。運動鞋彈性及避震能力之探討。國立體育學院論叢,8(2),271-281。
邱宏達、相子元、林德嘉(2002)。由地面反作用力評估鞋底避震能力—材料與人體測試之比較。體育學報,32,69-78。
王顯智(2003)。大學生運動傷害之分佈與再度傷害之危險因子。體育學報,35,15-24。
林燕君(2003)。國家運動選手運動傷害之調查研究(未出版之碩士論文)。高雄醫學大學,高雄市。
姬榮軍(2000)。動態活動與下階梯動作條件下老年人下肢肌肉勁度調節與肌電圖現象之研究。取自國立台灣師範大學博碩士論文系統。(系統編號89NTNU0567023)。
黃淑玲(2010)。不同鞋底剪力避震模式對下肢動力學之影響。臺北市立體育學院運動器材科技研究所碩士學位論文,未出版,台北市。
楊榮森(1995)。復健醫學。台北市:合記圖書。
英文部分
Apelqvist, J., & Larsson, J. (2000). What is the most effective way to reduce incidence of amputation in the diabetic foot? Diabetes/Metabolism Research and Reviews, 16, 75-83.
Arampatzis, A., Bruggemann, G. P., & Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics,. 32, 1349-1353.
Boden, B. P., Dean, G. S., Feagin, J. A. Jr., & Garrett, W. E. Jr. (2000). Mechanisms of anterior cruciate ligament injury. Orthopedics, 23, 573-578.
Boyer, K.A., Nigg, B.M. (2006). Soft tissue vibrations within one soft tissue compartment. Journal of Biomechanics, 36, 645-651.
Caselli, A., Pham, H., Giurini, J. M., Veves, A., & Armstrong, D.G. (2002). The forefoot-to-rearfoot plantar pressure ratio is increased in severe diabetic neuropathy and can predict foot ulceration. Diabetes Care, 25, 1066-1071.
Chambers, A. J., & Cham, R. (2007). Slip-related muscle activation patterns in the stance leg during walking. Gait & Posture, 25(4), 565-572.
Cheng, C. K., Lung, C. Y., Lee, Y. M., & Huang, C. H. (1999). A new approach of designing the tibial baseplate of total knee prostheses. Clinical Biomechanics, 14(2), 112-117.
Clement, D. B., Taunton, J. E., Smart, G. W., & McNicol, K. L. (1981). A survey of overuse running injuries. Physician Sportsmed, 9, 47-58.
Deshpande, A. D., Hayes, M.H., & Schootman, M. (2008). Epidemiology of diabetes and diabetes-related complications. Physical Therapy, 88, 1254-1264.
Dick, R., Sauers, E. L., Agel, J., Keuter, G., Marshall, S., & W., McCarty, K. (2007). Descriptive epidemiology of collegiate men's baseball injuries: National Collegiate Athletic Association Injury Surveillance System, 1988-1989 through 2003-2004. Journal of Athletic Training, 42, 183-193.
Divert, C., Mornieux, G., Baur, H., Mayer, F., & Belli, A. (2005). Mechanical comparison of barefoot and shod running. International Journal of Sports Medicine, 26, 593-598.
Farley, C. T., & Gonzales, O. (1996). Leg stiffness and stride frequency in human running. Journal of Biomechanics, 29, 181-186.
Gottschall, J. S., & Kram, R. (2005). Ground reaction forces during downhill and uphill running. Journal of Biomechanics, 38. 445-452.
Harrison, R.N., Lees, A., McCullagh, P.J.J., & Rowe, W.B. (1986). A bioengineering analysis of human muscle and joint forces in the lower limbs during running. Journal of Sports Sciences, 4, 201-218.
Helseth, J., Hortobagyi, T., & DeVita, P. (2008). How do low horizontal forces produce disproportionately high torques in human locomotion? Journal of Biomechanics, 41, 1747-1753.
Hreljac, A. (2004). Impact and overuse injuries in runners. Medicine & Science in Sports & Exercise, 5, 845-849.
Keller, T., Weisberger, A., Ray, J., Hasan, S., Shiavi, R., & Spengler, D. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical Biomechanics, 11, 253-259.
Kersting, U. G., & Bruggemann, G. P. (1999). Adaptation of the human calcaneus to variations of impact force during running. Clinical Biomechanics, 14, 494-503.
Kuitunen, S., Komi, P. V., & Kyrolainen, H. (2002). Knee and ankle joint stiffness in sprint running. Medicine & Science in Sports & Exercise, 34, 166-173.
Kyrolainen, H., Avela, J., & Komi, P. V. (2005). Changes in muscle activity with increasing running speed. Journal of Sports Sciences, 23, 1101-1109.
Levinger, P., & Gilleard, W. (2007). Tibia and rearfoot motion and ground reaction forces in patients with patellofemoral pain syndrome during walking. Gait and Posture, 25, 2-8.
Maynard, W. S. (2002). Tribology: Preventing slips and falls in the workplace. Occupational Health and Safety, 71, 134-140.
McAuley, E. (1991). Injuries in women's gymnastics - The state of the art. The American Journal of Sports Medicine, 15, 558-565.
Mero, A. (1988). Force-time characteristics and running velocity of male sprinters during the acceleration phase of sprinting. Research Quarterly for Exercise and Sport, 59 (2): 94-98.
Milner, C. E., Davis, I. S., & Hamill, J. (2006). Free moment as a predictor of tibial stress fracture in distance runners. Journal of Biomechanics, 39, 2819-2825.
Mueller, M. J., Zou, D., Bohnert, K. L., Tuttle, L. J. & Sinacore, D. R. (2008). Plantar stresses on the neuropathic foot during barefoot walking. Physical Therapy, 88, 1-10.
Munro, C. F., Miller, D. I., & Fuglevand, A. J. (1987). Ground reaction forcese in running: A reexamination. Journal of Biomechanics, 20, 147-155.
Nigg, B.M. (1986). Biomechanics of Running Shoes. Champaign, IL: Human Kinetics.
Nigg, B.M., & Segesser, B. (1992). Biomechanical and orthopedic concepts in sport shoe construction. Medicine & Science in Sport & Exercise, 24, 595-602.
Nigg, B.M., Stefanyshyn, D.J., Rozitis, A.I., & Mundermann, A. (2009). Resultant knee joint moments for lateral movement tasks on sliding and non-sliding sport surfaces. Journal of Sports Sciences, 27(5), 427-435.
Norkin, C. C., & Levangie, P. K. (1992). Joint structure & function: A comprehensive analysis. Philadelphia, PA: F.A. Davis Company.
Perry, J. (1992). Gait analysis: Normal and pathological function. Thorofare, NJ: SLACK.
Seay, J., Selbie, W. S., & Hamill, J. (2008). In vivo lumbo-sacral forces and moments during constant speed running at different stride lengths. Journal of Sports Sciences, 6, 1-11.
Stefanyshyn, D. J., & Nigg, B. M. (1998). Dynamic angular stiffness of the ankle joint during running and sprinting. Journal of Applied Biomechanics, 14, 292-299.
Stefanyshyn, D. J. (2006). Footwear traction and knee joint moments. Journal of Biomechanics, 39, 181.
Stiles, V., & Dixon, S. (2007). Biomechanical response to systematic changes in impact interface cushioning properties while performing a tennis-specific movement. Journal of Sports Sciences, 11, 1229-1239.
Swanson, S. C., & Caldwell, G. E. (2000). An integrated biomechanic analysis of high speed incline and level treadmill running. Medicine & Science in Sports & Exercise, 32(6), 1146-1155.
Taunton, J. E., Ryan, M. B., Clement, D. B., Mckenzie, D. C., Lloyd-Smith, D. R., & Zunbo, D. B. (2002). A retrospective case control analysis of 2002 running injuries. British Journal of Sports Medicine, 36, 95-101.
van Gent, R.N., Siem, D., van Middelkoop, M., van Os, A.G., Bierma-Zeinstra, S.M., & Koes, B.W. (2007). Incidence and determinants of lower extremity running injuries in long distance runners: A systematic review. British Journal of Sports Medicine, 41, 469-480.
Wakeling, J. M., & Nigg, B. M. (2001). Modification of soft tissue vibrations in the leg by muscular activity. Journal of Applied Physiology, 90, 412-420.
Wakeling, J.M., Nigg, B.M., & Rozitis, A.I. (2002). Muscle activity damps the soft tissue resonance that occurs in response to pulsed and continuous vibrations. Journal of Applied Physiology, 93, 1093-1103.
Wakeling, J. M., Liphard, M. A., & Nigg, M. B. (2003). Muscle activity reduces soft-tissue resonance at heel-strike during walking. Journal of Biomechanics, 36, 1761-1769.
Whittle, M. W. (1999). Generation and attenuation of transient impulsive forces beneath the foot: A review. Gait and Posture, 10, 264-275.
Yavuz, M., Tajaddini, A., Botek, G., & Davis, B. L. (2008). Temporal characteristics of plantar shear distribution: Relevance to diabetic patients. Journal of Biomechanics, 41, 556-559.