簡易檢索 / 詳目顯示

研究生: 林昌志
論文名稱: 生物鹼與氟離子之交互作用力探討
Characterizations of The Specific Interaction between Alkaloids And Fluoride Ions
指導教授: 王忠茂
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
中文關鍵詞: 生物鹼
英文關鍵詞: Alkaloid
論文種類: 學術論文
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Palmatine與Berberine為含有四級氮(quaternary nitrogen)的生物鹼(Alkaloid),可嵌入去氧核醣核酸(Deoxyribonucleic acid,簡稱DNA)結構中的AT-rich minor groove。由於所衍生的產物具有敏光性,可於紫外光照射下將叁重態氧(3O2)轉變為單重態氧(1O2),因此可藉以抑制癌細胞蔓延或治療腫瘤。相對於在藥物醫學上的研究,生物鹼在其他化學領域上的應用顯然較為不足。有鑑於此,本論文於是就生物鹼在陰離子辨識上進行探討。
      實驗顯示:Palmatine與Berberine在水溶液中無法與陰離子進行交互作用,但於非水溶液中則可與氟離子進行交互作用。由於Palmatine與Berberine不會與其他鹵素離子產生類似反應,Palmatine與Berberine在氟離子辨識上極具專一性與應用潛力。根據紫外光-可見光吸收光譜、螢光光譜與電化學分析,Palmatine與Berberine在DMSO中可與一個氟離子結合,結合常數約為1105。X-射線吸收光譜分析也証實此一結論,發現在Palmatine與Berberine分子中的氮原子,其K-edge會隨氟離子濃度增加而呈現系統性變化。此一結果顯示Palmatine與Berberine分子中的氮原子應是與氟離子進行交互作用的反應中心。有鑑於此交互作用,本論文也探討以Palmatine加速氟離子傳輸之潛力。

    Polycyclic aromatic alkaloids, such as palmatine and berberine, are potential DNA-targeting drugs that can intercalate into the AT-minor groove of DNA. Because the associated adducts are highly fluorescent and can convert 3O2 into 1O2 under UV irradiation, they are potential inhibitors of cancer cells. Despite the fruitful study in this aspect, research on other aspects, such as anion recognition, seems to be relatively rare.
    According to our study, palmatine and berberine interact weakly with fluoride, chloride, bromide, iodide, nitrate, perchlorate and sulfate in aqueous media, but they interact strongly with fluoride ion in aprotic environments, reflected in its UV-Vis absorption spectra, emission spectra and electrochemical behavior. The quaternary nitrogen atom in palmatine is responsible for the interaction with F- ions, evidenced by the N K-edge measurements and the characterizations with the analogues of palmatine, berberine and canadine. Because of such a specific interaction, palmatine and berberine show promise in fluoride transport.

    圖目錄---------------------------------------------------- I 表目錄-----------------------------------------------------X 中文摘要--------------------------------------------------- 1 英文摘要--------------------------------------------------- 2 第一章 緒論------------------------------------------------ 3 1.1 氟化物污染與危害----------------------------------------3 1.2 氟化物對動物的危害--------------------------------------4 1.3 生物鹼研究之回顧與應用-----------------------------------5 1.4 陰離子辨識---------------------------------------------8 第二章 實驗------------------------------------------------10 2.1 化學藥品----------------------------------------------10 2.2 實驗設備----------------------------------------------12 2.3 電極之製備--------------------------------------------14 2.3.1 ITO電極之製作---------------------------------------14 2.3.2 玻璃碳電極之清洗程序---------------------------------14 2.3.3 Palmatine/鄰-二胺苯氧化聚合修飾電極與原子力顯微鏡表 面影像分析--------------------------------------------16 2.3.4 Palmatine/鄰-二胺苯氧化聚合修飾電極與電化學石英震盪 天平分析---------------------------------------------16 2.4 氟離子傳輸分析-----------------------------------------18 2.4.1 氟離子選擇電極校正-----------------------------------18 2.4.2 離子選擇電極之濃度測量與資料傳送-----------------------19 2.4.3 氟離子傳輸探討---------------------------------------20 第三章 實驗結果與討論---------------------------------------22 3.1 生物鹼的氧化還原性質探討--------------------------------22 3.2 生物鹼在有機相中的光譜分析------------------------------26 3.2.1 Palmatine與氟離子之反應探討--------------------------26 3.2.2 Palmatine與氟離子間反應之可逆性探討-------------------33 3.2.3 Berberine與氟離子之反應探討--------------------------36 3.2.4 Canadine與氟離子之反應探討---------------------------40 3.2.5 Hydrastine與氟離子之反應探討-------------------------44 3.2.6 Hydrastinine與氟離子之反應探討-----------------------45 3.3.1 Palmatine與氫氧根離子之反應探討-----------------------47 3.3.2 Berberine與氫氧根離子之反應探討-----------------------51 3.3.3 Canadine與氫氧根離子之反應探討------------------------55 3.3.4 Hydrastine與Hydrastinine與氫氧根離子之反應探討--------57 3.4.1 Palmatine與氯、溴離子間之反應探討---------------------60 3.4.2 Berberine與氯、溴離子間之反應探討---------------------62 3.5 Palmatine或Berberine與其他含氟陰離子之反應探討------64 3.6 生物鹼對TBAF在XAS的偵測--------------------------------68 3.7 Palmatine與DNA間的反應探討-----------------------------72 3.8 Palmatine/DNA修飾電極製備與探討------------------------80 3.9.1 Palmatine/鄰-二胺苯氧化聚合修飾電極-------------------81 3.9.2 Palmatine/鄰-二胺苯修飾電極之AFM表面影像分析-----------84 3.9.3 Palmatine/鄰-二胺苯氧化聚合修飾電極之EQCM分析----------85 3.10.1 氟離子傳輸之探討------------------------------------87 3.10.2 Palmatine對氟離子、溴離子與氯離子傳輸之探討-----------90 第四章 結論------------------------------------------------94 第五章 展望------------------------------------------------95 第六章 參考文獻--------------------------------------------96

    1. 謝慶芳,指標作物監測空氣污染試驗,台中區農業改良場特刊第11號,1988。
    2. S. R. Boese, D. C. MacLean and D. E1-Mogazi. Environ. Pollut. 1995, 89, 203-208.
    3. D. S. Choi, M. Kayama, H. O. Jin, C. H. Lee, T. Izuta and T. Koike. Environ. Pollut. 2006, 139, 421-432.
    4. G. P. Pendey. Environ. Pollut. Ser. A. 1985, 37, 323-334.
    5. L. H. Weinstein and A. W. Davison. Environ. Pollut. 2003, 125, 3-11.
    6. J. Cao, S. F. Luo, J. W. Liu and Y. Li. Food Chem. 2004, 88, 233-236.
    7. B. S. Barton. Collections for an Essay Toward a Materia Medica of the United States, 1798.
    8. J. J. Inbaraj, B. M. Kukielczak, P. Bilski, S. L. Sandvik and C. F. Chignell. Chem. Res. Toxicol. 2001, 14, 1529-1534.
    9. J. J. Inbaraj, B. M. Kukielczak, P. Bilski, Y. Y. He, R. H. Sik and C. F. Chignell. Chem. Res. Toxicol. 2006, 19, 739-744.
    10. K. Hirakawa, S. Kawanishi and T. Hirano. Chem. Res. Toxicol. 2005, 18, 1545-1552.
    11. J. Vesely and K. Stulik. Anal. Chim. Acta. 1974, 73, 157.
    12. Y. Cui, H. J. Mo, J. C. Chen, Y. L. Niu, Y. R. Zhong, K. C. Zheng and B. H. Ye. Inorg. Chem. 2007, 46, 6427-6436.
    13. G. Sauerbrey, Z. Phys. 1957, 155, 206.
    14. H. Losito, E. D. Giglio, N. Cioffi and C. Malitesta. J. Mater. Chem. 2001, 11, 1812–1817.
    15. A. J.Bard and L. R. Faulkner. Electrochemical Methods, Fundamentals and Applications, 2nd Ed., Wiley, New York, 2001.
    16. S. Mazzini, M. C. Bellucci and R. Mondelli. Bioorg. Med. Chem. 2003, 11, 505-514.
    17. V. Amendola, D. Esteban-Gomez, L. Fabbrizzi and M. Licchelli. Acc. Chem. Res. 2006, 39, 343-353.
    18. Fluoride in Drinking-water, WHO. 1984.
    19. J. T. Arnason, B. Guerin, M. M. Kraml, B. Mehta, R. W. Redmond and J. C. Scaiano. Photochem. Photobiol. 1992, 55, 35-38.
    20. C. F. Chignell, A. G. Motten, R. H. Sik, C. E. Parker and K. Reszka. Photochem. Photobiol. 1994, 59, 5-11.
    21. J. S. Ren and J. B. Chaires. Biochemistry, 1999, 38, 16067-16075.
    22. E. Graf and J. M. Lehn. J. Am. Chem. Soc. 1976, 98, 6403-6405.
    23. S. Kubik, R. Kirchner, D. Nolting and J. Seidel. J. Am. Chem. Soc. 2002, 124, 12752-12760.
    24. K. J. Wallace, W. J. Belcher, D. R. Turner, K. F. Syed and J. W. Steed. J. Am. Chem. Soc. 2003, 125, 9699-9715.
    25. L. Fabbrizzi, F. Foti and A. Taglietti. Org. Lett. 2005, 7, 2603-2606.
    26. E. Fan, S. A. van Arman, S. Kincaid and A. D. Hamilton. J. Am. Chem. Soc. 1993, 115, 369-370.
    27. M. Boiocchi, L. Del Boca, D. E. Gomez, L. Fabbrizzi, M. Licchelli and E. Monzani. J. Am. Chem. Soc. 2004, 126, 16507-16514.
    28. M. Boiocchi, L. Del Boca, D. Esteban-Go´ mez, L. Fabbrizzi, M. Licchelli and E. Monzani. Chem. Eur. J. 2005, 11, 3097-3104.
    29. T. Gunnlaugsson, P. E. Kruger, P. Jensen, J. Tierney, H. D. Paduka Ali and G. M. Hussey. J. Org. Chem. 2005, 70, 10875-10878.
    30. E. J. Cho, J. W. Moon, S. W. Ko, J. Y. Lee, S. K. Kim, J. Yoon and K. C. Nam. J. Am. Chem. Soc. 2003, 125, 12376-12377.
    31. D. A. Jose, D. K. Kumar, B. Ganguly and A. Das. Org. Lett. 2004, 6, 3445-3448.
    32. E. J. Cho, B. J. Ryu, Y. J. Lee and K. C. Nam. Org. Lett. 2005, 7, 2607-2609.
    33. D. Esteban-Gomez, L. Fabbrizzi and M. Licchelli. J. Org. Chem. 2005, 70, 5717-5720.
    34. T. Steiner. Angew. Chem. Int. Ed. 2002, 41, 48-76.
    35. B. P. Hay, T. K. Firman and B. A. Moyer. J. Am. Chem. Soc. 2005, 127, 1810-1819.
    36. K. M. Millan, A. Saraullo and S. R. Mikkelsen. Anal. Chem. 1994, 66, 2943–2948.
    37. K. M. Millan and S. R. Mikkelsen. Anal. Chem. 1993, 65, 2317–2323.
    38. J. J. Gooding. Electroanalysis, 2002, 14, 1149–1156.
    39. P. E. Nielsen, M. Egholm, R. H. Berg and O. Buchardt. Science, 1991, 254, 1497–1500.
    40. M. Egholm, O. Buchardt, P. E. Nielsen and R. H. Berg. J. Am. Chem. Soc., 1992, 114, 1895–1897.
    41. K. Kerman, M. Vestergaard, N. Nagatani, Y. Takamura and E. Tamiya, Anal. Chem. 2006, 78, 2182–2189.
    42. C. Briones, E. Mateo-Marti, C. Gomez-Navarro, V. Parro, E. Roman and J. A. Martin-Gago. J. Mol. Catal. A: Chem. 2005, 228, 131–136.
    43. S. V. Lemeshko, T. Powdrill, Y. Y. Belosludtsev and M. Hogan, Nucleic Acids Res. 2001, 29, 3051–3058.
    44. A. A. Vaidya and M. L. Norton. Langmuir, 2004, 20, 11100–11107.
    45. T. Bo¨ cking, K. A. Killan, K. Gaus and J. J. Gooding. Langmuir, 2006, 22, 3494–3496.
    46. T. M. Herne and M. J. Tarlov. J. Am. Chem. Soc. 1997, 119, 8916–8920.
    47. A. B. Steel, T. M. Herne and M. J. Tarlov. Anal. Chem. 1998, 70, 4670–4677.
    48. E. L. S. Wong, E. Chow and J. J. Gooding. Langmuir, 2005, 21, 6957–6965.
    49. J. Watterson, P. A. E. Piunno and U. J. Krull. Anal. Chim. Acta, 2002, 469, 115–127.
    50. K. A. Peterlinz and R. M. Georgiadis. J. Am. Chem. Soc. 1997, 119, 3401–3402.
    51. R. Levicky, T. M. Herne, M. J. Tarlov and S. K. Satija. J. Am. Chem. Soc. 1998, 120, 9787–9792.
    52. A. A. Gorodetsky and J. K. Barton. Langmuir, 2006, 22, 7917–7922.

    無法下載圖示 本全文未授權公開
    QR CODE