研究生: |
彭兆威 Peng, Zhao-Wei |
---|---|
論文名稱: |
以還原條件促使TDP-43胜肽片段斷裂並於細胞質中產生聚集 Induction of cytosolic TDP-43 fragment aggregation with reductively cleavable peptides |
指導教授: |
黃人則
Huang, Jen-Tse 杜玲嫻 Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 雙硫鍵 、自動釋放 、類澱粉纖維 |
英文關鍵詞: | disulfide-bond, auto-release, amyloid fibrils |
DOI URL: | http://doi.org/10.6345/NTNU201900484 |
論文種類: | 學術論文 |
相關次數: | 點閱:175 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質與胜肽不正常堆疊在組織內形成斑塊是許多神經退性疾病的病徵之一,但由於這些錯誤堆疊蛋白質快速聚集的特性,難以觀測其堆疊過程與機制。在先前實驗室研究顯示,可能造成肌萎縮性脊髓側索硬化症(Amyotrophic lateral sclerosis, ALS)原因之一的蛋白質TDP-43,其C端胜肽片段D1 core具有快速聚集化形成類澱粉之特性。在這次研究中,我們目標建立一組化學的探針,此探針由雙硫鍵連結胜肽D1 core和細胞穿膜序列,當其進到細胞內,藉由細胞質內高還原電位的環境,產生自發性的氧化還原反應,使雙硫鍵斷裂,胜肽D1 core與細胞穿模序列分離後,其可展現自我聚集化的特性。我們利用固態液相胜肽合成法,結合出雙硫鍵胜肽探針JJS-1,於細胞外實驗中,使用還原劑穀胱甘肽模擬細胞質的環境,透過HPLC層析儀監測雙硫鍵裂解的過程;利用穿透式電子顯微鏡,觀測胜肽D1 core形成之類澱粉纖維狀聚集物。我們進一步將雙硫鍵的胜肽探針連接上螢光基團(Alexa Fluor 568 C5 Maleimide),應用於細胞實驗中。從共軛焦螢光顯微鏡觀測下,雙硫鍵螢光胜肽探針JJS-2-AF568和JJS-3-AF568可以進入U2OS細胞中,並在細胞質形成帶有螢光的類澱粉狀之聚集體。於此,我們建立了能夠在細胞中釋放ALS疾病相關TDP-43蛋白片段的探針,並期待此探針未來能有更多的應用於觀察神經退化性疾病產生之機制。
Misfolding and accumulation of soluble protein into insoluble proteinaceous aggregates are the hallmark feature among many neurodegenerative diseases. Because misfolding peptide/proteins tend to aggregate rapidly, it is difficult to observe their stacking process and mechanism. Previously we have identified an amyloidogenic region (known as D1 core), from TDP-43 protein, a nuclear protein associated with amyotrophic lateral sclerosis (ALS). In this study, we aim to establish a disulfide-linked probe, which would allow the automatic release of the D1 core in the cytosol, where is mainly reducing environment, through native redox chemistry. To this end, we conjugate peptide D1 core to the cell-penetrating peptide with a disulfide bond in solid-phase peptide synthesis. In the presence of reductant glutathione, the cleavage of disulfide-linked probe JJS-1 into two fragments was confirmed by HPLC chromatography and mass spectrometry. In addition, the released D1 core moiety can spontaneously self-assemble into fibrils under transmission electron microscope (TEM). We also conjugated disulfide-linked probes to the fluorophore Alexa 568 C5 Maleimide for cellular study. Confocal microscopy imaging revealed that both the two probes JJS-2-AF568 and JJS-3-AF568 are cell permeable and rapidly develop into pronounced aggregates in the cytosol within U2OS cells. In current study, the probes which allows to automatically release the ALS-related TDP-43 peptides in cells have been created and we anticipate the further applications in deciphering the pathological mechanisms of neurodegenerative diseases.
1. Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E. M.; Logroscino, G.; Robberecht, W.; Shaw, P. J.; Simmons, Z.; van den Berg, L. H., Amyotrophic lateral sclerosis., Nat. Rev. Dis. Primers, 2017, 3, 17071.
2. Hobson, E. V.; McDermott, C. J., Supportive and symptomatic management of amyotrophic lateral sclerosis., Nat. Rev. Neurol., 2016, 12 (9), 526-38.
3. Logroscino, G.; Beghi, E.; Zoccolella, S.; Palagano, R.; Fraddosio, A.; Simone, I. L.; Lamberti, P.; Lepore, V.; Serlenga, L.; Registry, S., Incidence of amyotrophic lateral sclerosis in southern Italy: a population based study., J. Neurol. Neurosurg. Psychiatry 2005, 76 (8), 1094-8.
4. Gunnarsson, L.; Lygner, P. E.; Veiga-Cabo, J.; de Pedro-Cuesta, J., An epidemic-like cluster of motor neuron disease in a swedish county during the period 1973–1984., Neuroepidemiology, 1996, 15 (3), 142-152.
5. Wingo, T. S.; Cutler, D. J.; Yarab, N.; Kelly, C. M.; Glass, J. D., The heritability of amyotrophic lateral sclerosis in a clinically ascertained United States research registry., PLoS One, 2011, 6 (11), e27985.
6. Maruyama, H.; Morino, H.; Ito, H.; Izumi, Y.; Kato, H.; Watanabe, Y.; Kinoshita, Y.; Kamada, M.; Nodera, H.; Suzuki, H.; Komure, O.; Matsuura, S.; Kobatake, K.; Morimoto, N.; Abe, K.; Suzuki, N.; Aoki, M.; Kawata, A.; Hirai, T.; Kato, T.; Ogasawara, K.; Hirano, A.; Takumi, T.; Kusaka, H.; Hagiwara, K.; Kaji, R.; Kawakami, H., Mutations of optineurin in amyotrophic lateral sclerosis., Nature, 2010, 465, 223.
7. Shaw, C.; Enayat, Z.; Chioza, B.; Al‐Chalabi, A.; Radunovic, A.; Powell, J.; Leigh, P., Mutations in all five exons of SOD‐1 may cause ALS., Ann. Neurol., 1998, 43 (3), 390-394.
8. DeJesus-Hernandez, M.; Mackenzie, I. R.; Boeve, B. F.; Boxer, A. L.; Baker, M.; Rutherford, N. J.; Nicholson, A. M.; Finch, N. A.; Flynn, H.; Adamson, J.; Kouri, N.; Wojtas, A.; Sengdy, P.; Hsiung, G. Y. R.; Karydas, A.; Seeley, W. W.; Josephs, K. A.; Coppola, G.; Geschwind, D. H.; Wszolek, Z. K.; Feldman, H.; Knopman, D. S.; Petersen, R. C.; Miller, B. L.; Dickson, D. W.; Boylan, K. B.; Graff-Radford, N. R.; Rademakers, R., Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS., Neuron, 2011, 72 (2), 245-256.
9. Van Deerlin, V. M.; Leverenz, J. B.; Bekris, L. M.; Bird, T. D.; Yuan, W.; Elman, L. B.; Clay, D.; Wood, E. M.; Chen-Plotkin, A. S.; Martinez-Lage, M.; Steinbart, E.; McCluskey, L.; Grossman, M.; Neumann, M.; Wu, I. L.; Yang, W. S.; Kalb, R.; Galasko, D. R.; Montine, T. J.; Trojanowski, J. Q.; Lee, V. M.; Schellenberg, G. D.; Yu, C. E., TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis., Lancet Neurol., 2008, 7 (5), 409-16.
10. Neumann, M.; Sampathu, D. M.; Kwong, L. K.; Truax, A. C.; Micsenyi, M. C.; Chou, T. T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C. M.; McCluskey, L. F.; Miller, B. L.; Masliah, E.; Mackenzie, I. R.; Feldman, H.; Feiden, W.; Kretzschmar, H. A.; Trojanowski, J. Q.; Lee, V. M., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis., Science, 2006, 314 (5796), 130-3.
11. Wu, L. S.; Cheng, W. C.; Shen, C. K. J., Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice., J. Biol. Chem., 2012, 287 (33), 27335-27344.
12. Scotter, E. L.; Chen, H. J.; Shaw, C. E., TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets., Neurotherapeutics, 2015, 12 (2), 352-63.
13. Majumder, V.; Gregory, J. M.; Barria, M. A.; Green, A.; Pal, S., TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis., BMC Neurol., 2018, 18(1), 90-96.
14. Wegorzewska, I.; Baloh, R. H., TDP-43-based animal models of neurodegeneration: new insights into ALS pathology and pathophysiology., Neurodegener Dis, 2011, 8 (4), 262-274.
15. Casafont, I.; Bengoechea, R.; Tapia, O.; Berciano, M. T.; Lafarga, M., TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons., J. Struct. Biol., 2009, 167 (3), 235-41.
16. Buratti, E.; Baralle, F. E., Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9., J. Biol. Chem., 2001, 276 (39), 36337-43.
17. Polymenidou, M.; Cleveland, D. W., Prion-like spread of protein aggregates in neurodegeneration., J. Exp. Med., 2012, 209 (5), 889-893.
18. Costessi, L.; Porro, F.; Iaconcig, A.; Nedeljkovic, M.; Muro, A. F., Characterization of the distal polyadenylation site of the ß-adducin (Add2) pre-mRNA., PLoS One, 2013, 8 (3), e58879-e58879.
19. Cassel, J. A.; Blass, B. E.; Reitz, A. B.; Pawlyk, A. C., Development of a novel nonradiometric assay for nucleic acid binding to TDP-43 suitable for high-throughput screening using AlphaScreen technology. J Biomol Screen, 2010, 15 (9), 1099-106.
20. Ayala, Y. M.; Zago, P.; D'Ambrogio, A.; Xu, Y. F.; Petrucelli, L.; Buratti, E.; Baralle, F. E., Structural determinants of the cellular localization and shuttling of TDP-43., J. Cell Sci., 2008, 121 (Pt 22), 3778-85.
21. Buratti, E.; Brindisi, A.; Giombi, M.; Tisminetzky, S.; Ayala, Y. M.; Baralle, F. E., TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing., J. Biol. Chem., 2005, 280 (45), 37572-84.
22. Ayala, Y. M.; Zago, P.; D'Ambrogio, A.; Xu, Y.-F.; Petrucelli, L.; Buratti, E.; Baralle, F. E., Structural determinants of the cellular localization and shuttling of TDP-43., J. Cell Sci., 2008, 121 (22), 3778-3785.
23. Cohen, T. J.; Lee, V. M.; Trojanowski, J. Q., TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies., Trends Mol. Med., 2011, 17 (11), 659-67.
24. Banks, G. T.; Kuta, A.; Isaacs, A. M.; Fisher, E. M. C., TDP-43 is a culprit in human neurodegeneration, and not just an innocent bystander., Mamm. Genome, 2008, 19 (5), 299.
25. Igaz, L. M.; Kwong, L. K.; Chen-Plotkin, A.; Winton, M. J.; Unger, T. L.; Xu, Y.; Neumann, M.; Trojanowski, J. Q.; Lee, V. M., Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J., Biol. Chem., 2009, 284 (13), 8516-24.
26. Liu, G. C.; Chen, B. P.; Ye, N. T.; Wang, C. H.; Chen, W.; Lee, H. M.; Chan, S. I.; Huang, J. J., Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core., Chem. Commun., 2013, 49 (95), 11212-4.
27. Chen, A. K. H.; Lin, R. Y. Y.; Hsieh, E. Z. J.; Tu, P. H.; Chen, R. P. Y.; Liao, T. Y.; Chen, W. L.; Wang, C. H.; Huang, J. J. T., Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in Amyotrophic Lateral Sclerosis., J. Am. Chem. Soc., 2010, 132 (4), 1186-1187.
28. Morales, R.; Moreno-Gonzalez, I.; Soto, C., Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases., PLoS Pathog., 2013, 9 (9):e1003537.
29. Jucker, M.; Walker, L. C., Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders., Ann. Neurol., 2011, 70 (4), 532-540.
30. Furukawa, Y.; Kaneko, K.; Watanabe, S.; Yamanaka, K.; Nukina, N., A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions., J. Biol. Chem., 2011, 286 (21), 18664-18672.
31. He, R. Y.; Chao, S. H.; Tsai, Y. J.; Lee, C. C.; Yu, C. Y.; Gao, H. D.; Huang, Y. A.; Hwang, E.; Lee, H. M.; Huang, J. J. T., Photocontrollable probe spatiotemporally induces neurotoxic fibrillar aggregates and impairs nucleocytoplasmic trafficking., Acs Nano, 2017, 11 (7), 6795-6807.
32. Guidotti, G.; Brambilla, L.; Rossi, D., Cell-Penetrating Peptides: From Basic Research to Clinics., Trends Pharmacol. Sci., 2017, 38 (4), 406-424.
33. Jarver, P.; Mager, I.; Langel, U., In vivo biodistribution and efficacy of peptide mediated delivery., Trends Pharmacol. Sci., 2010, 31 (11), 528-535.
34. Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y., Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery., J. Biol. Chem., 2001, 276 (8), 5836-40.
35. Park, J.; Ryu, J.; Kim, K. A.; Lee, H. J.; Bahn, J. H.; Han, K.; Choi, E. Y.; Lee, K. S.; Kwon, H. Y.; Choi, S. Y., Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells., J. Gen. Virol., 2002, 83, 1173-1181.
36. Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiantz, A., The third helix of the Antennapedia homeodomain translocates through biological membranes., J. Biol. Chem., 1994, 269 (14), 10444-50.
37. Henry, D. J.; Evans, E.; Yarovsky, I., A molecular dynamics study of siloxane diffusion in a polyester-melamine solution., Polymer, 2007, 48 (7), 2179-2185.
38. Herce, H. D.; Garcia, A. E.; Litt, J.; Kane, R. S.; Martin, P.; Enrique, N.; Rebolledo, A.; Milesi, V., Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides., Biophys. J., 2009, 97 (7), 1917-1925.
39. Cardo, L.; Thomas, S. G.; Mazharian, A.; Pikramenou, Z.; Rappoport, J. Z.; Hannon, M. J.; Watson, S. P., Accessible synthetic probes for staining actin inside platelets and megakaryocytes by employing Lifeact peptide., Chembiochem, 2015, 16 (11), 1680-1688.
40. Schneider, A. F. L.; Wallabregue, A. L. D.; Franz, L.; Hackenberger, C. P. R., Targeted subcellular protein delivery using cleavable cyclic cell-penetrating peptides., Bioconjug. Chem., 2019, 30 (2), 400-404.
41. Palomo, J. M., Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides., Rsc Advances, 2014, 4 (62), 32658-32672.
42. Drake, A. F., Polarization Modulation - the Measurement of linear and circular-dichroism., J of Physics E Sci Instrum, 1986, 19 (3), 170-181.
43. Wei, Y.; Thyparambil, A. A.; Latour, R. A., Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm., Biochim. Biophys. Acta, Proteins Proteomics, 2014, 1844 (12), 2331-2337.
44. Smolira, A.; Wessely-Szponder, J., Importance of the matrix and the matrix/sample ratio in MALDI-TOF-MS analysis of cathelicidins obtained from porcine neutrophils. Appl. Biochem. Biotechnol., 2015, 175 (4), 2050-2065.
45. Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils., Biochim. Biophys. Acta, 2010, 1804 (7), 1405-12.
46. Saibil, H. R., Macromolecular structure determination by cryo-electron microscopy., Acta Crystallogr. D Biol. Crystallogr., 2000, 56, 1215-1222.
47. Webb, R. H., Confocal optical microscopy., Rep. Prog Phys., 1996, 59 (3), 427-471.
48. Shibata, A.; Murata, S.; Ueno, S.; Liu, S. Q.; Futaki, S.; Baba, Y., Synthetic copoly(Lys/Phe) and poly(Lys) translocate through lipid bilayer membranes., Biochim. Biophys. Acta., 2003, 1616 (2), 147-155.
49. Zhao, L.; Almaraz, R. T.; Xiang, F.; Hedrick, J. L.; Franz, A. H., Gas-Phase Scrambling of Disulfide Bonds during Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis., J. Am. Soc. Mass Spectrom., 2009, 20 (9), 1603-1616.
50. Wu, G. Y.; Fang, Y. Z.; Yang, S.; Lupton, J. R.; Turner, N. D., Glutathione metabolism and its implications for health., J. Nutr., 2004, 134 (3), 489-492.
51. Hwang, C.; Sinskey, A. J.; Lodish, H. F., Oxidized redox state of glutathione in the endoplasmic reticulum., Science, 1992, 257 (5076), 1496-502.
52. Tünnemann, G.; Ter‐Avetisyan, G.; Martin, R. M.; Stöckl, M.; Herrmann, A.; Cardoso, M. C., Live‐cell analysis of cell penetration ability and toxicity of oligo‐arginines., J. Pept. Sci., 2008, 14 (4), 469-476.
53. Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J. B., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters., Proc. Natl. Acad. Sci. U. S. A., 2000, 97 (24), 13003-13008.
54. Herce, H. D.; Schumacher, D.; Schneider, A. F. L.; Ludwig, A. K.; Mann, F. A.; Fillies, M.; Kasper, M. A.; Reinke, S.; Krause, E.; Leonhardt, H.; Cardoso, M. C.; Hackenberger, C. P. R., Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells., Nat. Chem., 2017, 9 (8), 762-771.