簡易檢索 / 詳目顯示

研究生: 劉依萍
Liu, Yi-Ping
論文名稱: 嗜熱菌Thermus thermophilus海藻糖合成酶之蛋白質工程
Protein engineering of the thermophilic trehalose synthase from Thermus thermophilus
指導教授: 李冠群
Lee, Guan-Chiun
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 嗜熱型海藻糖合成酶蛋白質工程α-麥芽糖葡萄糖異構酶定位突變定位飽和突變多點飽和突變隨機突變
英文關鍵詞: Thermus thermophilus trehalose synthase, α-maltose, rational mutation, semi-ratinal mutation, random mutation
DOI URL: https://doi.org/10.6345/NTNU202204280
論文種類: 學術論文
相關次數: 點閱:178下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海藻糖(trehalose)是由兩分子葡萄糖以α-1,1-糖苷鍵連接而成的非還原性雙糖,能作為生物體內能量儲存與碳源的型式,以及在惡劣環境下,用以穩定生物膜與防止蛋白質變性的保護因子。因其具有許多特殊的物理及化學性質,海藻糖目前已廣泛應用於食品、化妝品及醫藥等工業。海藻糖合成酶(trehalose synthase,TS)可直接將麥芽糖異構化(isomerization)成海藻糖。由於反應只需要單一酵素且原料便宜,具有應用在工業上生產海藻糖的潛力。然而TS催化的反應為可逆反應,亦能將海藻糖轉化成麥芽糖,同時,TS具有不可逆的麥芽糖水解副反應,此水解反應會隨溫度上升而增加,而且副反應產物葡萄糖對TS活性具有抑制作用。因此,逆反應及副反應兩者都會導致海藻糖產量下降,若能降低TS的逆反應速率,以及增進熱穩定性,使水解反應降低,則可以提升海藻糖轉化率,使TS更適於工業應用。Thermus thermophilus海藻糖合成酶(TtTS)是目前已知的一種嗜熱性TS,具有工業應用優勢,但基因重組之TtTS於高溫(65℃)時轉化率僅52%,產量不高,因此本研究期望藉由蛋白質工程技術提高TtTS反應速率與轉化率。提升反應速率方面使用兩種策略,一種為給予TS偏好的受質alpha麥芽糖為正反應作用的主要受質,結果顯示,TS於含有較多alpha麥芽糖的反應中,反應速率提升,但轉化率沒有改變。另一種方法是利用偶合葡萄糖異構酶(Glucose isomerase,GI),將TS副產物葡萄糖轉化成果糖,來減少副產物的抑制效果,結果顯示,適量的GI能提升TS反應速率,然而對於最終的轉化率仍沒有影響。在提升TtTS轉化率方面,根據模擬的嵌合麥芽糖與海藻糖之TtTS三級結構,分析酵素與受質的結合情況,預測出與麥芽糖無明顯結合力,並且不具有TS家族保守性的胺基酸有Phe141、Phe163、Ile140、Asn244,搭配本研究所建立的高通量TS純化暨活性篩選系統,分別進行四個位點之定位飽和突變,以及多點飽和突變,此外,亦進行TtTS全基因的隨機突變,進行酵素定向演化。結果顯示,篩選足夠數量的單位點定位飽和突變庫後,未發現高於原TtTS轉化效率之突變株,而多點飽和突變與隨機突變庫中各挑了1000個突變株,亦尚未篩選到轉化率提升之突變株。經定序發現,當Phe141突變為Leu141且Phe163突變為Val163時,具有協同作用,能維持轉化率與原TtTS相當,此結果顯示,多點飽和突變的策略非常有機會能組合出轉化率提升的突變酵素。然而,多點飽和突變與隨機突變需要篩選龐大數量之突變株,研發更高效率的篩選系統將有助於得到轉化率提升之突變株。

    Trehalose is a non-reducing disaccharide, formed by two glucose units with an α-1,1-glycosidic linkage. It has many important physiological functions such as carbon source and energy storage,a protectant of protein and lipid against various environmental stresses. Trehalose has been widely applied in foods, cosmetics and pharmaceuticals industries. Trehalose synthase (TS) can reversibly catalyze the intramolecular transglucosylation of maltose to trehalose. Since the reaction requires only a single enzymetic step and inexpensive substrate, TS has the potential for producing trehalose in industry.However, the use of TS in industry still faces the problem of low conversion rate due to the reversed reaction and the irreversible side-reaction of maltose hydrolysis. Especially, the maltose hydrolysis activity increases when the reaction temperature rises and the product glucose inhibits the TS activity. Therefore, enhancing the forward isomerization activity and reducing the side reaction activity may improving the conversion rate of TS. The thermophilic Thermus thermophilus trehalose synthase (TtTS) is a promising enzyme for the trehalose production. However, at the optimal temperature (65 ℃), the trehlaose conversion rate of the recombinant TtTS is only 52%. In this study, we applied the protein engineering to enhance catalytic activity and the trehalose conversion rate of TtTS. Two appproaches were performed to improving the catalytic activity of TtTS. One is providing TS-prefered α-maltose anomer as major substrate. The results indicated that the initial reaction rate was higher when high concentrations of α-form maltose were used as substrates. However, the conversion rates were not affected. The other one is coupling TS with glucose isomerase(GI) which converts and thus removes the side-reaction product glucose into fructose to reduce the product inhibition. The results indicated that adequate amount and early addition of GI overwhelmed the glucose inhibition and enhanced the TtTS reaction rate, while the conversion rate was not affected. To improve the conversion rate of TtTS, we modeled the tertiary structures of TtTS and TtTS-maltose complexes and analyzed the residues located in close contact with maltose. Ile140, Phe141, Phe163 and Asn244 were found not unique in TS family features and showed no significant interactions with maltose. These 4 residues were chosen for site-specific saturation and multiple-sites saturation mutagenesis. In addition, random mutagenesis was also performed on whole TtTS gene, By using high-throughput TS screening system, 200 mutants for site-specific saturation and 1000 mutants for multiple-sites saturation and random mutagenesis, respectively, have been screened. The results indicated that no mutants with improving conversion rate were identified. By DNA sequencing, the combination of Phe141Leu and Phe163Val showed similar conversion rate to that of the wild type and implicated that simultaneous multiple mutations in a random manner possibly result in improved mutants due to the synergistic effects. In general, large-amount and labor-intensive screening are necessary for multiple-sites saturation and random mutagenesis. Some other high-throughput screen system should be established to screen the mutant library for the beneficial combination of mutations in the future.

    目錄 表目錄 v 圖目錄 vi 附錄目錄 viii 摘要 ix Abstract xi 壹、緒論 - 1 - 一、海藻糖 - 1 - 1. 性質與應用 - 1 - 2. 生產與製備 - 2 - 二、海藻糖合成酶(trehalose synthase,TS) - 3 - 1. TS簡介 - 3 - 2. TS作用機制 - 4 - 3. TS作用受質 - 5 - 4. TS結構 - 6 - 5. 嗜熱型海藻糖合成酶 (Thermus thermophilus TS, TtTS) - 7 - 三、蛋白質結構模擬 - 8 - 四、蛋白質工程( protein engineering) - 9 - 貳、研究目的 - 12 - 参、材料與方法 - 13 - 一、質體構築 - 13 - 1. 宿主菌株與培養基 - 13 - 2. TtTS基因重組質體 - 13 - 3. 質體DNA製備 - 13 - 4. DNA電泳分析 - 13 - 二、質體轉型 - 14 - 1. 勝任細胞 (competent cell)的製備 - 14 - 2. E. coli 轉形作用 - 15 - 三、蛋白質表達與純化 - 15 - 1. 蛋白質表達與純化 - 15 - 2. 高通量之蛋白表達與純化-親和性層析法 - 16 - 3. 高通量之蛋白表達與純化-熱變性純化法 - 17 - 四、蛋白質定量 - 17 - 五、酵素反應 - 17 - 1. TtTS活性分析-High-performance liquid chromatography (HPLC) - 17 - 2. TS 酵素動力學分析 - 19 - 3. TS 突變株篩選-Maltase-coupled TS assay - 20 - 六、以澱粉製備α-麥芽糖為主的反應受質 - 21 - 1. 配置可溶性澱粉 - 21 - 2. 置備α-麥芽糖 - 21 - 3. 酵素反應α-麥芽糖 - 21 - 七、Glucose isomerase(GI)-偶合之TtTS反應 - 22 - 八、模擬TtTS蛋白質三級結構 - 22 - 九、模擬TtTS與麥芽糖的複合物立體結構 - 23 - 十、TtTS蛋白質工程 - 23 - 1. 定位突變引子設計 - 23 - 2. 定位飽和突變引子設計 - 23 - 3. 點突變PCR - 23 - 4. 多點飽和突變引子設計 - 24 - 5. 多點飽和突變PCR - 24 - 6. 隨機突變引子設計 - 25 - 7. 隨機突變error-prone PCR(ep PCR) - 25 - 8. 限制酵素切割與DNA接合 - 26 - 肆、結果 - 27 - 一、TtTS活性分析 - 27 - 1. TtTS轉化率 - 27 - 2. TtTS 動力學 - 27 - 二、以α-麥芽糖為主的TtTS反應分析 - 28 - 三、GI-coupled TtTS反應分析 - 28 - 四、模擬TtTS蛋白質三級結構 - 29 - 五、模擬TtTS與麥芽糖的複合物立體結構 - 30 - 六、TtTS蛋白質工程 - 31 - 1. TtTS定位突變 - 31 - 2. TtTS定位飽和突變 - 31 - 3. TtTS多點飽和突變 - 32 - 4. TtTS隨機突變 - 33 - 5. 定序突變株 - 33 - 6. 定序之突變株轉化蔗糖產率分析 - 34 - 伍、討論 - 35 - 一、TtTS活性分析 - 35 - 二、以α-麥芽糖為主的TtTS反應分析 - 36 - 三、GI-coupled TtTS反應分析 - 37 - 四、TtTS蛋白質工程 - 38 - 1. 突變庫的建立 - 38 - 2. 突變株的篩選 - 39 - 3. 新突變庫的建立 - 40 - 4. 新的篩選方式 - 41 - 陸、參考文獻 - 43 - 表目錄 表一. 定位突變與定位飽和突變引子設計 - 50 - 表二. 多點飽和突變引子設計 - 51 - 表三. PDB資料庫中TtTS的胺基酸序列搜尋結果 - 52 - 表四. 距離麥芽糖5Å以內胺基酸與麥芽糖作用力整理 - 53 - 表五. 比對與TtTS模擬之三級結構相似之GH13蛋白 - 54 - 表六. 三級結構比對+1 subsite胺基酸 - 55 - 表七. 定位飽和突變胺基酸定序 - 56 - 表八. 多點飽和突變胺基酸定序 - 58 - 表九. 突變株異構化能力統整 - 59 - 圖目錄 圖一. TtTS最適溫度65℃轉化率分析 - 61 - 圖二. TtTS低溫30℃轉化率分析 - 63 - 圖三. TtTS 酵素動力學 - 65 - 圖四. 以α-麥芽糖為主反應的轉化率分析 - 66 - 圖五. GI-coupled TtTS之反應 - 67 - 圖六. 在不時間加入GI-coupled TtTS之反應 - 69 - 圖七. 模擬TtTS的蛋白質三級結構 - 70 - 圖八. 模擬TtTS與麥芽糖的複合物立體結構 - 71 - 圖九. DrTS模擬麥芽糖與TtTS模擬麥芽糖結構比較 - 72 - 圖十. 距離受質5Å內的TtTS胺基酸 - 73 - 圖十一. 突變株TtTS的DNA定序 - 74 - 圖十二. 隨機突變定序結果 - 78 - 圖十三. 定位突變與定位飽和突變蛋白質SDS-PAGE - 79 - 圖十四. 突變株F141Y 轉化率分析 - 80 - 圖十五. 突變株F141S轉化率分析 - 81 - 圖十六. 突變株F163Y轉化率分析 - 82 - 圖十七. F163S轉化率分析 - 83 - 圖十八. 突變株Phe141X突變庫轉化率分析 - 84 - 圖十九. 突變株.Phe163X突變庫轉化率分析 - 85 - 圖二十. 放大培養定位飽和突變株蛋白純化 - 86 - 圖二十一. 放大培養定位飽和突變株之轉化率分析 - 88 - 圖二十二. 突變株.Ile140X突變庫轉化率分析 - 89 - 圖二十三. 突變株.Asn244X突變庫轉化率分析 - 90 - 圖二十四. 多點飽和突變轉化率分析 - 93 - 圖二十五. 隨機突變的轉化率分析 - 96 - 附錄目錄 附錄一.糖結構圖 - 97 - 附錄二.海藻糖生合成途徑 - 98 - 附錄三.TS性質 - 99 - 附錄四.海藻糖合成酶與α-澱粉酶家族所具有的四個保守區域及催化和受質結合位 - 100 - 附錄五.TS推測作用機制 - 101 - 附錄六. 已知 TS 立體結構活性中心 - 102 - 附錄七.DrTS結構 - 103 - 附錄八.PCR流程 - 104 - 附錄九.多點飽和突變PCR流程示意圖 - 105 - 附錄十.隨機突變之基因突變率 - 106 - 附錄十一.Maltase-coupled TS assay 原理 - 107 - 附錄十二. B factor突變策略 - 108 - 附錄十三. 微流系統篩選TtTS突變株流程圖 - 109 -

    Agresti, J.J., Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J.-C., Marquez, M., Klibanov, A.M., Griffiths, A.D., and Weitz, D.A. (2010). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences 107, 4004-4009.
    Arnold, F.H., and Georgiou, G. (2003). Directed enzyme evolution: screening and selection methods (Springer Science & Business Media).
    Bailey, J., Fishman, P.H., and Pentchev, P. (1967). Studies on mutarotases I. Purification and properties of a mutarotase from higher plants. Journal of Biological Chemistry 242, 4263-4269.
    Belton, P.S., and Gil, A.M. (1994). IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 34, 957-961.
    Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., et al. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42, W252-258.
    Bornscheuer, U.T., and Pohl, M. (2001). Improved biocatalysts by directed evolution and rational protein design. Current Opinion in Chemical Biology 5, 137-143.
    Bosley, A.D., and Ostermeier, M. (2005). Mathematical expressions useful in the construction, description and evaluation of protein libraries. Biomolecular engineering 22, 57-61.
    Caner, S., Nguyen, N., Aguda, A., Zhang, R., Pan, Y.T., Withers, S.G., and Brayer, G.D. (2013). The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology 23, 1075-1083.
    Carpenter, J.F., and Crowe, J.H. (1989). An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28, 3916-3922.
    Chen, F., Nakamura, T., and Wada, H. (2004). Development of New Organ Preservation Solutions in Kyoto University. Yonsei Med J 45, 1107-1114.
    Chen, Y.-S., Lee, G.-C., and Shaw, J.-F. (2006). Gene Cloning, Expression, and Biochemical Characterization of a Recombinant Trehalose Synthase from Picrophilus torridus in Escherichia coli. Journal of Agricultural and Food Chemistry 54, 7098-7104.
    Chica, R.A., Doucet, N., and Pelletier, J.N. (2005). Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16, 378-384.
    Chow, S.-Y., Wang, Y.-L., Ye, L.-C., and Liaw, S.-H. (2015). Crystal Structures of Trehalose Synthase from Deinococcus Radiodurans Reveal a Closed Conformation for Intramolecular Isomerization Catalysis and Mutant Induction of an Active-Site Aperture. Biophysical Journal 108, 376a-377a.
    Colin, P.-Y., Kintses, B., Gielen, F., Miton, C.M., Fischer, G., Mohamed, M.F., Hyvönen, M., Morgavi, D.P., Janssen, D.B., and Hollfelder, F. (2015). Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nature communications 6.
    Crowe, J.H., Crowe, L.M., Oliver, A.E., Tsvetkova, N., Wolkers, W., and Tablin, F. (2001). The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43, 89-105.
    D. Xie, Q.Z., X. H. Li, J. Zhu, M. Sheng, X. W. Li, (2013). Research Hotspots in Trehalose Synthase Gene Engineering. Advanced Materials Research 726-731, 4401-4404.
    Duan, X., Cheng, S., Ai, Y., and Wu, J. (2016). Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis. PloS one 11, e0149208.
    Eijsink, V.G.H., Gأ─seidnes, S., Borchert, T.V., and van den Burg, B. (2005). Directed evolution of enzyme stability. Biomolecular Engineering 22, 21-30.
    Elbein, A.D., Pan, Y.T., Pastuszak, I., and Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R-27R.
    Guo, H.H., Choe, J., and Loeb, L.A. (2004). Protein tolerance to random amino acid change. Proceedings of the National Academy of Sciences of the United States of America 101, 9205-9210.
    Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., Liesegang, H., Johann, A., Lienard, T., Gohl, O., Martinez-Arias, R., et al. (2004). The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotech 22, 547-553.
    Isbell, H.S., and Pigman, W. (1969). Mutarotation of sugars in solution. II. Catalytic processes, isotope effects, reaction mechanisms, and biochemical aspects. Adv Carbohydr Chem Biochem 24, 13-65.
    Kaasen, I., McDougall, J., and Strom, A.R. (1994). Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145, 9-15.
    Kille, S., Acevedo-Rocha, C.G., Parra, L.P., Zhang, Z.-G., Opperman, D.J., Reetz, M.T., and Acevedo, J.P. (2012). Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS synthetic biology 2, 83-92.
    Koh, S., Kim, J., Shin, H.-J., Lee, D., Bae, J., Kim, D., and Lee, D.-S. (2003). Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase. Carbohydrate Research 338, 1339-1343.
    Kretz, K.A., Richardson, T.H., Gray, K.A., Robertson, D.E., Tan, X., and Short, J.M. (2004). Gene site saturation mutagenesis: a comprehensive mutagenesis approach. Methods Enzymol 388, 3-11.
    Krissinel, E. (2010). Crystal contacts as nature's docking solutions. Journal of Computational Chemistry 31, 133-143.
    Lee, J.H., Lee, K.H., Kim, C.G., Lee, S.Y., Kim, G.J., Park, Y.H., and Chung, S.O. (2005). Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl Microbiol Biotechnol 68, 213-219.
    Liang, J., Huang, R., Huang, Y., Wang, X., Du, L., and Wei, Y. (2013). Cloning, expression, properties, and functional amino acid residues of new trehalose synthase from Thermomonospora curvata DSM 43183. Journal of Molecular Catalysis B: Enzymatic 90, 26-32.
    Liu, H., and Naismith, J.H. (2008). An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnology 8, 1.
    Liu, Y.-C., Wang, Y.-F., Qian, K.-F., Zhang, J., Xiao, C.-P., Xing, L.-J., and Li, M.-C. (2013). The sectionalized DNA shuffling: an effective tool for molecular directed evolution of Meiothermus ruber TreS. Microbiology China 40, 362-372.
    Maruta, K., Hattori, K., Nakada, T., Kubota, M., Sugimoto, T., and Kurimoto, M. (1996). Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim Biophys Acta 1289, 10-13.
    Matsukubo, T., and Takazoe, I. (2006). Sucrose substitutes and their role in caries prevention. International dental journal 56, 119-130.
    Meleiro, C.R., Silva, J.T., Panek, A.D., and Paschoalin, V.M. (1993). Isolation and purification of trehalose 6-phosphate from Saccharomyces cerevisiae. Anal Biochem 213, 171-172.
    Miah, F., Koliwer-Brandl, H., Rejzek, M., Field, R.A., Kalscheuer, R., and Bornemann, S. (2013). Flux through Trehalose Synthase Flows from Trehalose to the Alpha Anomer of Maltose in Mycobacteria. Chemistry & Biology 20, 487-493.
    Nishimoto, T., Nakada, T., Chaen, H., Fukuda, S., Sugimito, T., Kurimoto, M., and Tsujisaka, Y. (1996a). Purification and Characterization of a Thermostable Trehalose Synthase from TheYlnus
    aquaticus (Japan, Biosci. Biotech. Biochelll ..).
    Nishimoto, T., Nakada, T., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., and Tsujisaka, Y. (1997). Action of a Thermostable Trehalose Synthase from Thermus aquaticus on Sucrose. Bioscience, Biotechnology, and Biochemistry 61, 898-899.
    Nishimoto, T., Nakano, M., Ikegami, S., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., and Tsujisaka, Y. (1995). Existence of a Novel Enzyme Converting Maltose into Trehalose. Bioscience, Biotechnology, and Biochemistry.
    Nishimoto, T., Nakano, M., Nakada, T., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., and Tsujisaka, Y. (1996b). Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci Biotechnol Biochem 60, 640-644.
    Ohtake, S., and Wang, Y.J. (2011). Trehalose: current use and future applications. J Pharm Sci 100, 2020-2053.
    Ooshima, T., Izumitani, A., Minami, T., Fujiwara, T., Nakajima, Y., and Hamada, S. (1991). Trehalulose does not induce dental caries in rats infected with mutans streptococci. Caries research 25, 277-282.
    Parthasarathy, S., and Murthy, M. (2000). Protein thermal stability: insights from atomic displacement parameters (B values). Protein engineering 13, 9-13.
    Patrick, W.M., Firth, A.E., and Blackburn, J.M. (2003). User‐friendly algorithms for estimating completeness and diversity in randomized protein‐encoding libraries. Protein engineering 16, 451-457.
    Paul, M.J., Primavesi, L.F., Jhurreea, D., and Zhang, Y. (2008). Trehalose metabolism and signaling. Annu Rev Plant Biol 59, 417-441.
    Perucho, J., J. Casarejos, M., Gomez, A., M. Solano, R., Garcia de Yebenes, J., and A. Mena, M. (2012). Trehalose Protects from Aggravation of Amyloid Pathology Induced by Isoflurane Anesthesia in APPswe Mutant Mice. Current Alzheimer Research 9, 334-343.
    Reetz, M.T., Carballeira, J.D., and Vogel, A. (2006). Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angewandte Chemie International Edition 45, 7745-7751.
    Roy, R., Usha, V., Kermani, A., Scott, D.J., Hyde, E.I., Besra, G.S., Alderwick, L.J., and Fütterer, K. (2013). Synthesis of α-Glucan in Mycobacteria Involves a Hetero-octameric Complex of Trehalose Synthase TreS and Maltokinase Pep2. ACS Chemical Biology 8, 2245-2255.
    Ryu, S.-I., Park, C.-S., Cha, J., Woo, E.-J., and Lee, S.-B. (2005). A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: Molecular cloning and characterization. Biochemical and Biophysical Research Communications 329, 429-436.
    Schlessinger, A., Yachdav, G., and Rost, B. (2006). PROFbval: predict flexible and rigid residues in proteins. Bioinformatics 22, 891-893.
    Thomsen, R., and Christensen, M.H. (2006). MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49, 3315-3321.
    Vázquez‐Figueroa, E., Chaparro‐Riggers, J., and Bommarius, A.S. (2007). Development of a Thermostable Glucose Dehydrogenase by a Structure‐Guided Consensus Concept. ChemBioChem 8, 2295-2301.
    Vovis, G.F., and Lacks, S. (1977). Complementary action of restriction enzymes endo R• DpnI and endo R• DpnII on bacteriophage f1 DNA. Journal of molecular biology 115, 525-538.
    Wang, J., Zhang, S., Tan, H., and Zhao, Z. (2007a). PCR-based strategy for construction of multi-site-saturation mutagenic expression library. Journal of Microbiological Methods 71, 225-230.
    Wang, J.H., Tsai, M.Y., Chen, J.J., Lee, G.C., and Shaw, J.F. (2007b). Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. J Agric Food Chem 55, 3435-3443.
    Wang, S.B., Li, A.H., and Chao, S.D. (2012). Liquid properties of dimethyl ether from molecular dynamics simulations using ab initio force fields. J Comput Chem 33, 998-1003.
    Wang, Y.-L., Chow, S.-Y., Lin, Y.-T., Hsieh, Y.-C., Lee, G.-C., and Liaw, S.-H. (2014). Structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in catalysis of the intramolecular isomerization. Acta Crystallographica Section D 70, 3144-3154.
    Wei, Y., Liang, J., Huang, Y., Lei, P., Du, L., and Huang, R. (2013). Simple, fast, and efficient process for producing and purifying trehalulose. Food Chemistry 138, 1183-1188.
    Weise, S.E., Kim, K.S., Stewart, R.P., and Sharkey, T.D. (2005). β-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiology 137, 756-761.
    Xiaoling, T.J.D. (1998). Prearation and Functional Properties of Crystalline Alpha Maltose [J]. JOURNAL OF WUXI UNIVERSITY OF LIGHT INDUSTRY 4.
    Yamada, K., Shinohara, H., and Hosoya, N. (1985). Hydrolysis of 1-O-alpha-d-glucopyranosyl-d-fructofuranose (Trehalulose) by rat intestinal sucrase-isomaltase complex. Nutrition Reports International 32, 1211-1220.
    Yang, S., Guo, Z., Zhou, Y., Zhou, L., Xue, Q., Miao, F., and Qin, S. (2010). Synthesis and moisture absorption and retention activities of a carboxymethyl and a quaternary ammonium derivative of alpha,alpha-trehalose. Carbohydr Res 345, 120-123.
    Yang, Y., Faraggi, E., Zhao, H., and Zhou, Y. (2011). Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics 27, 2076-2082.
    Yuan, Z., Zhao, J., and Wang, Z.-X. (2003). Flexibility analysis of enzyme active sites by crystallographic temperature factors. Protein engineering 16, 109-114.
    Zhang, D., Li, N., Swaminathan, K., and Zhang, L.-H. (2003). A motif rich in charged residues determines product specificity in isomaltulose synthase. FEBS letters 534, 151-155.
    Zhang, R., Pan, Y.T., He, S., Lam, M., Brayer, G.D., Elbein, A.D., and Withers, S.G. (2011). Mechanistic Analysis of Trehalose Synthase from Mycobacterium smegmatis. Journal of Biological Chemistry 286, 35601-35609.
    Zhu, Y., Zhang, J., Xing, L., and Li, M. (2009). [Progress on molecular biology of trehalose synthase--a review]. Wei Sheng Wu Xue Bao 49, 6-12.

    下載圖示
    QR CODE