簡易檢索 / 詳目顯示

研究生: 吳沛凡
論文名稱: 含主族元素(Bi、Te)與過渡金屬(Mo、Ru)團簇化合物的合成與化性研究
指導教授: 謝明惠
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 182
中文關鍵詞: 團簇化合物
英文關鍵詞: Bi, Te, Ru, Mo
論文種類: 學術論文
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1. Bi-Mo-CO系統

    將NaBiO3與Mo(CO)6以莫耳比為1:1的比例於MeOC2H4OH中加熱迴流反應,可得到主體結構為四面體的化合物[Bu4N][BiMo3(CO)9(-OC2H4OMe)3Na]。

    此化合物可與正一價或正二價陽離子做離子交換反應得到一系列相似結構之產物[BiMo3(CO)9(-OC2H4OMe)3ML]- (ML = Li,Tl,Ca(NCMe)2,Ca(OAc),Pb(NO3),ZnCl,Cd(OAc),HgCl2,CoCl)。有趣的是當[BiMo3(CO)9(-OC2H4OMe)3Na]-加入KCl時卻無法反應,可能是立體障礙造成的結果。此外[BiMo3(CO)9(-OC2H4OMe)3Na]-與Pb(OAc)2反應時則可得到dimer形式的產物。同時我們進一步利用理論計算來佐證實驗中所得到的結果。

    2. Te-Ru-CO系統

    將K2TeO3與Ru3(CO)12以莫耳比為1:1的比例於MeOH中加熱迴流反應,可得到主體結構為八面體的化合物[PPh4]2[TeRu5(CO)14]•CH2Cl2。利用[PPh4]2[TeRu5(CO)14]•CH2Cl2與CuX (X = Cl,Br,I)反應,依不同比例可生成一系列含銅的新穎化合物:[TeRu5(CO)14CuX]2-、[TeRu5(CO)14Cu2X2]2-、[Te2Ru10(CO)28Cu4X2]2-與[Te2Ru4(CO)10Cu2X2]2-,並探討相互間的轉換關係,此外,我們亦利用理論計算來探討其相關的性質。

    1. Bi-Mo-CO system

    When NaBiO3 was treated with 1 equiv of Mo(CO)6 in a methanol solution, the novel tetrahedral cluster [BiMo3(CO)9(-OC2H4OMe)3Na]- was formed. [BiMo3(CO)9(-OC2H4OMe)3Na]- was found to undergo ion exchange with cations or dications to give the corresponding clusters [BiMo3(CO)9(-OC2H4OMe)3ML]- (ML = Li, Tl, Ca(NCMe)2, Ca(OAc), Pb(NO3), ZnCl, Cd(OAc), HgCl2, and CoCl). Interestingly, the ion exchange reaction of [BiMo3(CO)9(-OC2H4OMe)3Na]- with KCl was not observed probably due to the size effect, which was further supported by DFT calculations. In addition, further reaction of [BiMo3(CO)9(-OC2H4OMe)3Na]- with Pb(OAc)2 gave the dimeric complex rather than monomer species, which was also demonstrated by DFT calculations.

    2. Te-Ru-CO system

    The reaction of K2TeO3 with Ru3(CO)12 in a molar ratio of 1: 1 in a methanol solution produced an octahedral cluster [TeRu5(CO)14]2-. When [TeRu5(CO)14]2- was treated with CuX (X = Cl, Br, I) in various ratios, a series of copper-incorporated polynuclear complexes, [TeRu5(CO)14CuX]2-, [TeRu5(CO)14Cu2X2]2-, [Te2Ru10(CO)28Cu4X2]2-, and [Te2Ru4(CO)10Cu2X2]2- were synthesized. The transformation and the nature of these complexes were further studied and compared by DFT calculations.

    中文摘要…………………………………………………………………………….…...… І 英文摘要…………………………………………………………………….………........... Ⅲ 1. 前言…………….……………..………………………………………………….. 1 1.1 背景………………………………………………………...…………………….. 1 1.2 研究目標.………………………………………..………..................................… 9 2. 實驗………………………………………...………………………..................… 10 2.1 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Na]之合成................................................... 11 2.2 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Na]與LiCl之反應 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Li]之合成...........................................…...... 12 2.3 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Na]與CaCl2之反應 [BiMo3(CO)9(-OC2H4OMe)3Ca(MeCN)2]之合成….………………….………. 13 2.4 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與Ca(OAc)2 之反應 [PPh4][BiMo3(CO)9(-OC2H4OMe)3CaOAc]之合成………………….....…..….. 13 2.5 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與Pb(NO3)2之反應 [PPh4][BiMo3(CO)9(-OC2H4OMe)3PbNO3]之合成.............................................. 14 2.6 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與Pb(OAc)2之反應 [PPh4]2[BiMo3(CO)9(-OMe)3PbOAc]2之合成...................................................... 15 2.7 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與ZnCl2之反應 [PPh4][BiMo3(CO)9(-OC2H4OMe)3ZnCl]之合成…...……………….……......... 16 2.8 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Na]與Cd(OAc)2之反應 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Cd(OAc)]之合成.………………………… 17 2.9 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與HgCl2之反應 [PPh4][BiMo3(CO)9(-OMe)(μ-OC2H4OMe)2HgCl2]之合成................................. 18 2.10 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與CoCl2之反應 [PPh4][BiMo3(CO)9(-OC2H4OMe)3CoCl]之合成..………................................... 18 2.11 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與Tl(OAc)之反應 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Tl]之合成...........................................…....... 19 2.12 [PPN]2[(CO)5MoSbMo3(CO)9(-Cl)3]之合成….……………………….…...…... 20 2.13 [PPh4]2[(CO)5MoSbMo3(CO)9(-Br)3]之合成……................................................ 20 2.14 [PPh4]2[TeRu5(CO)14]•CH2Cl2之合成..……………….…..................................... 21 2.15 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuCl之反應 [PPh4]2[TeRu5(CO)14CuCl]之合成..……………….…........................................... 21 2.16 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuBr之反應 [PPh4]2[TeRu5(CO)14CuBr]之合成..……………….…........................................... 22 2.17 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuI之反應 [PPh4]2[TeRu5(CO)14CuI]之合成..……………….…............................................. 23 2.18 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuCl之反應 [PPh4]2[TeRu5(CO)14Cu2Cl2]之合成..……………….…........................................ 23 2.19 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuBr之反應 [PPh4]2[TeRu5(CO)14Cu2Br2]之合成..……………….…........................................ 24 2.20 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuCl之反應 [PPh4]2[{TeRu5(CO)14}2Cu4Cl2]之合成..……………….…................................... 24 2.21 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuBr之反應 [PPh4]2[Te2Ru4(CO)10Cu2Br2]之合成..……………….…....................................... 25 2.22 X-ray分析方法........................................................................................................ 25 2.23 DFT理論計算方法..................................................................... 26 3. 結果………………………………………………………...………………….…. 29 3.1 Bi-Mo-CO系統…………………………………………………………………... 29 3.1-1 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Na]之合成................................................... 29 3.1-2 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Li]之合成...........................…...................... 30 3.1-3 [PPh4][BiMo3(CO)9(-OC2H4OMe)3CaOAc]之合成……….....……………...…. 31 3.1-4 [PPh4][BiMo3(CO)9(-OC2H4OMe)3PbNO3]之合成.............................................. 33 3.1-5 [PPh4]2[BiMo3(CO)9(-OMe)3PbOAc]2之合成...................................................... 34 3.1-6 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Tl]之合成.........................................…......... 35 3.2 Te-Ru-CO系統…………………………………………………………………... 37 3.2-1 [PPh4]2[TeRu5(CO)14]•CH2Cl2之合成..……………….…..................................... 37 3.2-2 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuX (X = Cl, Br, I)以1:1比例反應…………. 37 3.2-3 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuX (X = Cl, Br, I)以1:2比例 於MeCN溶劑下反應…………………………………………………………… 40 3.2-3 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuX (X = Cl, Br, I)以1:2比例 於THF溶劑下反應(低溫、短時間)…………………………................................ 42 3.2-3 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuX (X = Cl, Br, I)以1:2比例 於THF溶劑下反應(低溫、長時間)…………………………................................ 42 3.2-4 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuX (X = Cl, Br, I)逐步加成反應………….... 44 3.2-5 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuX (X = Cl, Br)以1:2比例長時間反應........ 45 3.3 晶體結構解析…………………………………….…………………………….… 48 3.3-1 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3CaOAc]的晶體結構………………….…... 48 3.3-2 [PPh4][BiMo3(CO)9(-OC2H4OMe)3PbNO3]的晶體結構……………….………. 50 3.3-3 [PPh4]2[BiMo3(CO)9(-OMe)3Pb(OAc)]2的晶體結構……………….………….. 52 3.3-4 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Tl]的晶體結構……………….……………. 54 3.2-5 [PPh4]2[(CO)5MoSbMo3(CO)9(-Br)3]的晶體結構…………..………………….. 56 4. 討論………………………………………………………………...................….. 58 4.1 Bi-Mo-CO反應性的探討………………...……………………………................ 58 4.1-1 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與LiCl、KCl之反應……..................... 59 4.1-2 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與Tl(OAc)之反應…….......................... 64 4.1-3 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與CaCl2、Ca(OAc)2之反應.................... 66 4.1-4 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與Pb(NO3)2、Pb(OAc)2之反應……....... 68 4.1-5 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na]與Group 12之反應...………….…........ 71 4.2 Te-Ru-CuX反應性的探討……………...……………………………................... 74 4.2-1 [PPh4]2[TeRu5(CO)14]•CH2Cl2與CuX (X = Cl, Br, I)之反應................................ 75 4.3 DFT理論計算與電化學分析……………………………………………………. 80 4.3-1 [PPh4][BiMo3(CO)9(-OC2H4OMe)3M] (M = Na, Li)之比較……………............ 80 4.3-2 [PPh4]2[TeRu5(CO)14]•CH2Cl2與[PPh4]2[TeRu5(CO)14CuX] (X = Cl, Br, I)之比較…………………………………………………………….................................. 85 4.4 NMR光譜探討........................................................................................................ 89 4.4-1 [PPh4][BiMo3(CO)9(-OC2H4OMe)3CaOAc]、[PPh4]2[BiMo3(CO)9(-OMe)3Pb(OAc)]2與[Bu4N][BiMo3(CO)9(μ-OC2H4OMe)3CdOAc]的1H NMR光譜比較..................... 90 5. 結論…………………………………………..…………………………………... 92 6. 參考資料…………………………………..……………………………………... 94

    1. Gates, B. C., Ed. Metal clusters in Catalysis; Amsterdam, 1986.
    2. (a) Cotton, F. A.; Adams, R. D.; Cullen, W. R.; Hunter, D. L. Inorg. Chem. 1975, 14, 1395. (b) Whitmire, K. H.; Lagrone, C. B.; Rheingold, A. L. Inorg. Chem. 1986, 25, 2472. (c) Das, B. K.; Kanatzidis, M. G. Polyhedron. 1997, 3061.
    3. (a) Curtis, M. D.; Druker, S. H. J. Am. Chem. Soc. 1997, 119, 1027. (b) Sweigart, D. A.; Yu, K.; Li, H.; Watson, E. J.; Virkaitis, K. L.; Carpenter, G. B. Organometallics 2001, 20, 3550.
    4. Chérioux, F.; Therrien, B.; Süss-Fink, G. Chem. Commun. 2004, 204.
    5. Neumann, R.; Branytska, O. V. J. Org. Chem. 2003, 68, 9510.
    6. Limberg, C.; Boggan, S.; Ziemer, B.; Brandt, M. Angew. Chem., Int. Ed. Engl. 2004, 43, 2846.
    7. (a) Weller, A. S.; Brayshaw, S. K.; Harrison, A.; McIndoe, J. S.; Marken, F.; Raithby, P. R.; Warren, J. E. J. Am. Chem. Soc. 2007, 129, 1793. (b) Weller, A. S.; Brayshaw, S. K.; Green, J. C.; Hazari, N.; McIndoe, J. S.; Marken, F.; Raithby, P. R. Angew. Chem., Int. Ed. Engl. 2006, 45, 6005.
    8. Adams, R. D.; Captain, B.; Smith, M. D.; Beddie, C.; Hall, M. B. J. Am. Chem. Soc. 2007, 129, 5981.
    9. Ogo, S.; Kabe, R.; Uehara, K.; Kure, B.; Nishimura, T.; Menon, S. C.; Harada, R.; Fukuzumi, S.; Higuchi, Y.; Ohhara, T.; Tamada, T.; Kuroki, R. Science, 2007, 316, 585.
    10. Hinnemann, B.; Nørskov, J. K. J. Am. Chem. Soc. 2003, 125, 1466.
    11. (a) Dobbek, H.; Svetlitchnyi, V.; Gremer, L.; Huber, R.; Meyer, O. Science, 2001, 293, 1281. (b) Gourlay, C.; Nielsen, D. J.; White, J. M.; Knottenbelt, S. Z.; Kirk, M. L.; Young, C. G. J. Am. Chem. Soc. 2006, 128, 2164. (c) Panda, R.; Berlinguette, C. P.; Zhang, Y.; Holm, R. H. J. Am. Chem. Soc. 2005, 127, 11092.
    12. (a) Chen, L.; Corbet, J. D. J. Am. Chem. Soc. 2003, 125, 1170. (b) Salloum, D.; Gautier, R.; Potel, M.; Gougeon, P. Angew. Chem., Int. Ed. Engl. 2005, 44, 1363.
    13. Chitsaz, S.; Fenske, D.; Fuhr, O. Angew. Chem., Int. Ed. Engl. 2006, 45, 8055.
    14. Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
    15. Xu, Li.; Ugrinov, A.; Sevov, S. C. J. Am. Chem. Soc. 2001, 123, 4091.
    16. Grooer, T.; Scheer, M. Organometallics 2000, 19, 3683.
    17. Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1995, 34, 1542.
    18. Shieh, M.; Mia, F.-D.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1993, 32, 2785.
    19. McNeese, T. J.; Cohen, M. B.; Foxman, B. M. Organometallics 1984, 3, 552.
    20. Shieh, M.; Cherng, J.-J.; Lee, G.-H.; Peng, S.-M.; Ueng, C.-H. Organometallics 2000, 19, 213.
    21. Shieh, M.; Cherng, J.-J.; Lai, Y.-W.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Chem. Eur. J. 2002, 8, 4522.
    22. 郭可欣,國立台灣師範大學碩士論文,2001。
    23. van Hal, J. W.; Whitmire, K. H.; Zouchoune, B.; Halet, J.-F.; Saillard, J.-Y. Inorg. Chem. 1995, 34, 5455.
    24. Shriver, D. F.; Drezdzon, M. A. The Manpulation of Air-Sensitive Compound; Wiley: New York, 1986.
    25. 張簡宗德,國立台灣師範大學碩士論文,2004。
    26. 蔡宛珍,國立台灣師範大學碩士論文,2006。
    27. 詹莉芬,國立台灣師範大學碩士論文,1997。
    28. 謝明惠,賴韻文,未發表之結果。
    29. Sheldrick G. M., SHELXL97, University of Göttingen, Germany, 1997.
    30. 謝明惠,陳輝龍,未發表之結果。
    31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gill, P. M. W.; Challacombe, M.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian: Wallingford, CT USA, 2004.
    32. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. J. Chem. Phys. 1992, 96, 2155. (c) Becke, A. D. J. Chem. Phys. 1992, 97, 9173.
    33. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
    34. (a) Schwerdtfeger, P.; Dolg M.; Schwarz, W. H.; Bowmaker, G. A.; Boyd, P. D. W. J. Chem. Phys. 1989, 91, 1762. (b) Andrae, D.; Haubermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123. (c) Bergner, A.; Dolg M.; KŸchle, W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 80, 1431.
    35. Dunning, T. H., Jr.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer H. F., III, Ed.; Plenum: New York, 1976; Vol. 3, p 1.
    36. (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066. (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
    37. Wiberg, K. B. Tetrahedron 1968, 24, 1083. The Wiberg bond indices (bond orders) are a measure of bond strength.
    38. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
    39. Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
    40. 謝明惠,繆佳曄,未發表之結果。
    41. Manos, M. J.; Chrissafis, K.; Kanatzidis M. G. J. Am. Chem. Soc. 2006, 128, 8875.
    42. Shannon, R. D. Acta Crystallogr. 1976, A32, 751.
    43. Yue, Y-F.; Wang, B-W.; Gao, E-Q.; Fang, C-J.; He, C.; Yan, C-H. Chem. Commun., 2007, 2034.
    44. Arnold, P. L.; Liddle, S. T.; Mcmaster, J.; Jones, C.; Mills, D. P. J. Am. Chem. Soc. 2007, 129, 5360.
    45. Hull, K. L.; Noll, B. C.; Henderson, K. W. Organometallics 2006, 25, 4072.
    46. Luo, Q.; Zhang, X. H.; Huang, K. L.; Liu, S. Q.; Yu, Z. H.; Li, Q. S. J. Phys. Chem. A 2007, 111, 2930.
    47. Montoya, A.; Schlunke, A.; Haynes, B. S. J. Phys. Chem. B 2006, 110, 17145.
    48. (a) Jansen, H. B.; Ross, P. Chem. Phys. Lett. 1969, 3, 140. (b) Boys, S. B.; Bernardi, F. Mol. Phys. 1970, 19, 533. (c) Mayer, I.; Surjan, P. R. Chem. Phys. Lett. 1992, 191, 497. (d) Simon, S.; Duran, M.; Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11024. (e) Salvador, P.; Paizs, B.; Duran, M.; Suhai, S. J. Comput. Chem. 2001, 22, 76.
    49. 勞工安全衛生簡訊第58期-鉈的特性與健康危害。
    50. Wiles, A. B.; Pike, R. D. Organometallics 2006, 25, 3282.
    51. Chandrasekaran, P.; Maque, J. T.; Balakrishna, M. S. Inorg. Chem. 2006, 45, 6678.
    52. 李長儒,國立台灣師範大學碩士論文,2003。
    53. 陳鴻文,國立台灣師範大學碩士論文,2004。
    54. 朱緯廷,國立台灣師範大學碩士論文,2006。
    55. Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.
    56. 朱晏頤,國立台灣師範大學碩士論文,2007。

    無法下載圖示 本全文未授權公開
    QR CODE